论文部分内容阅读
用恒电流法,析氢法和交流阻抗法等方法测试了合金元素Hg和Ga对镁阳极电化学腐蚀行为的影响,并用扫描电镜和X射线衍射法分析了合金元素Hg和Ga对镁阳极的显微组织和相结构的影响。结果表明:铸态的Mg-4.8%Hg-8.8Ga合金晶界析出Mg5Ga2和Mg21Ga5Hg3相,铸态的Mg-8.8%Hg-8%Ga和Mg-7.2%Hg-8%Ga合金晶界析出Mg21Ga5Hg3相,铸态的Mg-7.2%Hg-2.6%Ga合金析出Mg3Hg和Mg21Ga5Hg3相。各合金析氢速率从小到大依次为:Mg-7.2%Hg-2.6%Ga合金,Mg-4.8%Hg-8%Ga合金,Mg-7.2%Hg-8%Ga合金和Mg-8.8%Hg-8%Ga合金。最小的析氢速率为1.75ml/(cm2.min)。各合金电化学活性从大到小依次为:Mg-8.8%Hg-8%Ga合金,Mg-7.2%Hg-8%Ga合金,Mg-4.8%Hg-8%Ga合金和Mg-7.2%Hg-2.6%Ga合金。在200 mA/cm2恒电流测试中最负的稳定电位-1.932 V出现在Mg-8.8%Hg-8%Ga合金中。
The effects of alloying elements Hg and Ga on the electrochemical corrosion behavior of magnesium anode were tested by galvanostatic method, hydrogen evolution method and AC impedance method. The effects of alloying elements Hg and Ga on the magnesium anode were analyzed by scanning electron microscopy and X-ray diffraction The impact of micro-organization and phase structure. The results show that the Mg5Ga2 and Mg21Ga5Hg3 phases are precipitated in the as-cast Mg-4.8% Hg-8.8Ga alloy and the Mg21Ga5Hg3 precipitates in the as-cast Mg-8.8% Hg-8% Ga and Mg-7.2% Hg-8% Phase, as-cast Mg-7.2% Hg-2.6% Ga alloy precipitated Mg3Hg and Mg21Ga5Hg3 phase. The hydrogen evolutive rate of each alloy is as follows: Mg-7.2% Hg-2.6% Ga alloy, Mg-4.8% Hg-8% Ga alloy, Mg-7.2% Hg-8% Ga alloy and Mg-8.8% Hg-8 % Ga alloy. The minimum hydrogen evolution rate was 1.75 ml / (cm2.min). The descending order of the electrochemical activity of the alloys is: Mg-8.8% Hg-8% Ga alloy, Mg-7.2% Hg-8% Ga alloy, Mg-4.8% Hg-8% Ga alloy and Mg-7.2% Hg -2.6% Ga alloy. The most negative steady-state potential of -1.932 V in the 200 mA / cm2 galvanostatic test was found in the Mg-8.8% Hg-8% Ga alloy.