二维主成份分析相关论文
为了提高最大散度差鉴别分析方法在人脸识别中的识别率,提出了一种改进的基于差空间的最大散度差鉴别分析人脸识别算法.该方法把类......
主成分分析(PCA)是降维的一种经典方法。二维主成分分析(2DPCA)在特征抽取之前不需要将图像矩阵转化为向量形式,所以能快速地提取......
为了更好地获取人脸的纹理特征和解决人脸多频带的权值问题,提出了双树复小波多频带类内类间不确定度特征融合的人脸识别算法。首......
提出一种基于二维主成份分析(2DPCA)和压缩感知的人脸识别方法。阐述2DPCA提取特征向量的工作原理,利用压缩感知方法求解待识别图......
人脸识别是当前生物特征识别中的研究热点,研究人脸识别技术具有十分重要的理论和应用价值。近几年来,为适应监控、安全和互联网应......
为了提高二维主成份分析(2DPCA)方法在人脸识别中的识别率,提出了一种改进的2DPCA和分块图像相结合的人脸识别方法。该方法根据类内......
在人脸识别过程中,基于2DPCA特征提取方法具有直接、高效等特点。但它只包含了二阶统计信息,因而丢失了可能对分类很有用的高阶统......