高斯混合概率假设密度滤波器相关论文
基于机场目标跟踪的实际问题,提出一种多模型不敏高斯混合概率假设密度滤波算法。首先,为减小计算量,将扩展目标建模成带有扩展信......
基于有限集统计学理论的多目标跟踪技术具备严格的贝叶斯理论解释基础,可以同时完成目标数目及状态的估计,并避免了复杂的数据关联......
针对多目标视频跟踪中的新生目标出生强度估计问题,提出一种有效的基于熵分布和覆盖率的方法.该方法利用前一时刻所获目标状态及测......
雷达辐射源目标跟踪在军事应用领域具有重要的意义。结合目标类别信息有助于提高高斯混合概率假设密度(Gaussian mixture-probabili......
针对剪枝合并过程中,考虑参数不周而导致跟踪精度下降的问题,对GM-PHD滤波器的剪枝合并方法进行了优化。在传统剪枝合并的基础上,......
针对传统的高斯混合概率假设密度(GM—PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混......
针对高斯混合概率假设密度(GM-PHD)滤波器未检查一对一假设以及难以跟踪跨越目标的问题,在其基础上提出一种约束权重的改进多目标跟......
群目标跟踪是一种情况更为复杂的多目标跟踪问题,由于军事辐射源目标经常出现雷达关机的情况,因此常用的多目标跟踪方法对于这类辐射......
传统的GM-PHD(Gaussian Mixture-Probability Hypothesis Density)滤波算法用当前时刻接收到的全部量测值对所有高斯项进行更新,使......
针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯......
随着现代目标跟踪场景的日益复杂化,未知跟踪环境带来的量测不确定性和高机动目标带来的建模不确定性对机动目标跟踪技术提出了更......
概率假设密度滤波器将目标的状态空间及观测空间描述为随机有限集合的形式,有效避免了多目标跟踪中复杂的数据关联问题。但对于不......