LiVOPO4相关论文
LiVOPO4正极材料理论容量高达166 mAh·g-1,和LiFePO4的理论容量(170mAh·g-1)几乎相接近。然而,却比LiFePO4的电压平台(3.6 V)高出0......
SnO_2负极材料具有容量高、成本低等优点。但由于其充放电过程中伴随着巨大的体积变化,引起电极粉化,导致循环性能差,从而阻碍了商......
LiVOPO_4材料的电子电导率和离子导电率较低,但是拥有结构稳定、安全性能可靠、高工作电压(3.9 V,vs Li/Li+)和高比容量(317.44 m ......
以LiVOPO_4、蔗糖为原料,采用溶液沉积-热解法制备了LiVOPO_4/C复合材料。采用热重与差热分析、X-射线衍射分析、扫描电镜分析以及......
采用简单的恒电流法测定了锂离子在LiVOPO4中的扩散系数.结果表明,充、放电过程中锂离子在LiVOPO4电极中的扩散系数分别为4.78×10......
以LiVOPO4、Al(NO3)3·9H2O、H3PO4为原料,采用溶胶一凝胶法制备了AlPO4包覆的LiVOPO4粉末(AlPO4包覆LiVOPO4)。采用热重与差热分析......
锂离子二次电池的性能和成本在很大程度上取决于正极材料的电化学性能和成本。在过渡金属氧化物型正极材料中,钴酸锂材料成本较高;......
商业化的锂离子二次电池是以锂过渡金属氧化物作为正极材料,由于安全性等问题限制了其更广泛的应用。在研究和开发的众多新型锂离......
本文采用溶胶凝胶法合成了β-LiVOPO4锂离子电池正极材料,研究了其结构和电化学性能。结果表明,在500℃较低温度下能够合成晶态纯......