High quality GeSn thin films grown by molecular beam epitaxy

来源 :2015 Shanghai Thin Film Conference(2015上海薄膜国际会议) | 被引量 : 0次 | 上传用户:xing123qw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Germanium tin(GeSn)is a group Ⅳ alloy with high carder mobility and tunable energy bandgap [1].Theory predicts that the bandgap has a crossover between indirect and direct bandgap transition at around 10%Sn content [2].Therefore,GeSn alloy is a promising candidate as a semiconductor material for advanced electronic and optoelectronic devices [3.4].GeSn thin films on Ge(001)with Sn composition up to 8.8%were grown by molecular beam epitaxy.The Sn composition was confirmed using high resolution x-ray diffraction(HRXRD),secondary ion mass spectrometry(SIMS)and transmission electron microscopy(TEM).And the surface morphologies were investigated by atomic-force microscopy(AFM).Moreover,the lattice quality was analyzed by TEM.It is discovered that the Sn composition in the tensile-strained GeSn thin films is evidently higher than that with compressive strained under the same growth conditions.The Sn composition in the GeSn thin films on InP(001)is 4.3 times higher than that on Ge(001).
其他文献
以五氧化二铌、纳米二氧化钛为原料,通过固相法制备了锂离子电池负极材料Ti2Nb2O9.考察了在不同的温度下煅烧得到的Ti2Nb2O9电化学性能.恒流充放电测试表明,随着煅烧温度升高,首次放电比容量先升高而降低.1100℃下制备Ti2Nb2O9负极材料在300 mA/g电流密度下,首次放电和充电比容量分别为194.7 mAh/g和177.2 mAh/g.循环50次后,放电和充电比容量仍达到130.2
以钛酸四丁酯,碳酸锂为原料制备了锂离子电池负极材料Li2ZnTi3O8.考察了在掺杂以下金属改性材料的电化学性能.Li2Zn0.5Mg0.5Ti3O8,Li2Zn0.5Cu0.5Ti3O8,Li2Zn0.5Co0.5Ti3O8,Li2Zn0.5Ni0.5Ti3O8,Li2Zn0.5Mn0.5Ti3O8的在电流密度为1.0、2.0A g-1的循环性能均小于Li2ZnTi3O8的放电容量,当倍率为1.
本文采用快速的溶胶凝胶合成法成功地合成了Li2MnSiO4正极材料,并考察了碳含量对其结构和性能的影响.电化学测试结果表明:刚开始随着碳含量的增加,合成出的材料的电化学性能较好.当理论碳含量为20wt%时,合成出的Li2MnSiO4正极材料呈现出了最高的放电容量,在0.06 C倍率下的首次放电容量177.5 mAh/g.随着碳含量继续增加至25wt%,放电容量略有下降,为172.6 mAh g-1
在日本和韩国,高性能锰基正极材料已经或将成为动力电池的宠儿。然而,由于生产技术和专利的原因,高端的锰基正极材料(尤其是锰酸锂)产品主要由日本和韩国企业垄断,致使国内电池生产企业在应用高端锰酸锂生产电池的成本偏高,限制了锰基正极材料在高端动力电池方面的应用。基于此,本论文利用改进的高温固相合成路线制备多孔微球状的锰基(锰酸锂和镍锰酸锂)正极材料[1-4]。通过组成和结构优化,制备的锰基正极材料具有比
会议
Periodic semiconductor nanostructure arrays have the potential for nanoelectronic and optoelectronic application.Besides the conventional low efficiency lithographic techniques broad ion beam irradiat
会议
Germanium has been attracting a lot of interest due to its much higher electron and hole mobility than those in Si,and thus been considered as the most promising channel material for future MOSFET dev
Mobility boosters are imminently required for high performance and low power CMOS generations.Compressively strained silicon-germanium(sSiGe)channel,integrated into a Si/sSiGe/SOI quantum well(QW)MOSF
Germanium is one of the most promising candidates for the channel material of future CMOS devices,because of its high carrier mobility.However,a critical issue to realize high performance Ge CMOS devi
It has been theoretically predicted that 1.4%biaxial tensile strain can convert Ge,which is compatible with Si CMOS technology,into a direct band-gap semiconductor [1] and increase the carrier mobilit
Germanium is a promising candidate to replace silicon in nanoelectronics due to its significantly higher electron and hole mobilities than silicon.However,the unstable germanium oxide formed at the in