固体催化剂的优化制备及催化餐饮废油合成生物柴油的性能研究

来源 :山东大学 | 被引量 : 0次 | 上传用户:ILOVELUBIN
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
原料油高成本是我国生物柴油产业化发展的主要瓶颈。以餐饮废油脂(waste cooking oils,WCOs)为原料油同时满足原料供给和环保需求,符合我国国情及战略发展。当前工业生产多采用均相碱催化酯交换法,反应迅速,但催化剂不可重复利用,且严重腐蚀设备、产物提纯产生大量废水,同时WCOs中高含量游离脂肪酸严重毒害碱催化剂。采用固体法催化WCOs制备生物柴油主要有两条反应路径:一步法,即固体酸催化法;两步法,即先以固体酸催化WCOs酯化使游离脂肪酸降至lwt.%以下,再以固体碱催化酯交换获取生物柴油。其中,碳基固体酸因原料来源广、催化活性高、环境友好而广受关注,以竹子为原料制备碳基固体酸,可实现竹材高值化利用,但目前相关报道不多。常见固体碱主要为负载型及复合金属氧化物。白云石主要成分为CaMg(CO3)2,高温煅烧生成的CaO-MgO复合金属氧化物己被证实具有优异的催化酯交换活性。本文提出竹炭基固体酸-改性白云石固体碱两步法非均相催化WCOs合成生物柴油的研究思路,从催化剂的制备、表征、催化酯化及酯交换性能、催化机理等方面出发,辅以单因素、响应曲面法(Response Surface Methodology,RSM)、人工神经网络(Artificial Neural Network,ANN)等数据分析手段,系统地对非均相催化WCOs合成生物柴油的生产路线加以优化,主要包含如下四方面内容。
  (1)研究了不同制备方式对竹炭基固体酸催化酯化活性的影响。以油酸与甲醇的酯化为探针,通过XRD、FTIR、SEM、EA、N2吸附脱附、XPS、Hammett酸强度、酸密度测定等表征,发现采用不完全碳化-液相磺化法制备的固体酸呈较低石墨化程度的无定型碳结构,表面磺酸密度为1.80mmol/g,而采用磷酸活化-磷钨酸浸渍负载制备的固体酸石墨化程度较高,表面酸密度为2.02mmol/g。采用单因素法优化竹炭基固体酸催化酯化的反应工况,结果表明若催化酯化达到相同的转化率,前者所需反应条件更为温和。催化剂制备及酯化的进行均可通过加载外场来促进,微波叠加机械搅拌的组合外场不仅可显著缩短催化剂制备周期,也可强化固体酸催化的酯化反应。竹炭基固体酸可在较温和的工况下催化餐饮废油降酸,也可一步催化WCOs的同步酯化酯交换。竹炭基固体酸使用过程中,活性位不可避免地流失,这也是其催化活性降低的主要原因。
  (2)以NaAlO2为活性组分,通过浸渍法负载不同载体,借助XRD、Hammett指示剂、N2吸附脱附等表征手段,探讨不同载体种类、浸渍方法对NaAlO2调控负载型固体碱催化酯交换的作用规律,并结合RSM中CCD(Central CompositeDesign)、BBD(Box-Behnken Design)模型对酯交换参数进行优化。相比于MCM-41、SiO2、γ-Al2O3等常见惰性载体,埃洛石独特的中空纳米管状结构使负载NaAlO2所得催化剂具有更佳的催化活性及稳定性,超声浸渍同样有助于实现更均匀稳定的活性位负载。对于活性载体白云石,煅烧-水合浸渍-再煅烧过程可改善催化剂微观结构,提高催化活性,并有效抑制活性Ca2+浸出,显著提高催化剂稳定性,增加工业应用可行性。
  (3)研究了热解、水合、碱土金属氧化锶SrO改性对白云石催化酯交换活性的影响规律。借助XRD、N2吸附脱附、CO2-TPD等表征明确了白云石高温热解生成CaO-MgO复合金属氧化物的反应路径,发现煅烧温度显著影响白云石催化酯交换性能。水合过程可有效丰富白云石微观孔隙结构、增加表面碱密度及碱强度,从而提升催化活性。对比不同制备方法得到的SrO改性白云石催化剂,发现改进浸渍法对催化剂活性和稳定性的提升尤为显著。该方法制备过程中,有片层状氢氧化物生成,Sr被包裹其间,与CaO发生较强的相互作用,实现二者彼此间的有效固定。通过遗传算法(Genetic Algorithm,GA)优化ANN,建立三层反向传播前馈网络模型对酯交换过程进行训练和预测,结果表明在催化剂添加量4.8%、醇油摩尔比8.2、反应温度65.4℃时,预测及实际产物收率分别为99.15%、99.09%,模型精确度高。
  (4)通过改进浸渍法制备ZnO/白云石复合催化剂,结合XRD、N2吸附脱附、NH3-TPD、CO2-TPD等表征手段,辅以密度泛函理论,研究了Zn改性白云石一步法催化WCOs同步酯化-酯交换制备生物柴油的可行性。基于人工神经网络对催化反应工况加以优化,当Zn/Ca摩尔比为1时,酸性协同碱性位点催化WCOs的同步酯化-酯交换实现最高98.92%的生物柴油收率。采用分子模拟研究Zn掺杂CaO前后的结构演变,计算乙酸、甲醇在催化剂表面的最佳吸附位点和吸附能大小。Zn的掺杂可提高催化剂稳定性,而在反应体系中,甲醇倾向于吸附在Ca位点,在Zn位点活化效果较差,解离出的甲氧基攻击性较弱,相反地,乙酸更易吸附在Zn位点,C=O双键得到活化。所得结论以实验结果相互佐证。
其他文献
学位
含氮化合物是一类重要的环境污染物,不仅能够对环境造成严重的危害,还能直接或间接地影响人类的健康。二氧化钛及其改性材料作为一类优良的催化剂,可以把绿色可持续的光能转化为降解污染物所需的化学能,已经被广泛地应用于污染物处理以及环境自清洁中。这类催化剂能够作为环境自清洁材料和环境修复材料参与到含氮化合物在环境中的转化和去除过程中。目前的研究主要集中在二氧化钛催化剂以及含氮化合物的独立研究上,含氮化合物基
铁基氧化物磁性纤维材料不仅具有优异的吸附性能,还具有纤维形貌大的长径比、自支撑、不团聚和磁性材料易分离的优势,在水污染处理方面具有广泛的应用。静电纺丝法是常用的制备纤维材料的技术,采用溶胶-凝胶法合成前驱体纺丝液,可以制得高饱和磁化强度的磁性纤维。Fe3O4和MgFe2O4是最常用的磁性材料,具有饱和磁化强度高、原材料来源广泛、环境友好等优势,是处理废水中污染物的理想吸附剂材料。首先从前驱体纺丝液
学位
学位
苄嘧磺隆(Bensulfuron methyl,BSM)作为磺酰脲类除草剂的典型代表,主要用于水稻田中阔叶杂草的去除,它具有低毒、广谱、选择性强、使用频次低的优势,已成为我国普遍使用的除草剂之一。由于其卓越的控草、除草性能,BSM对我国水稻增产贡献巨大。随着人们对粮食需求量的进一步提高,BSM在我国的生产量、使用量可能进一步增加。但是BSM在发挥除草作用之余,能够长期存在于自然环境中,对浮游生物、
学位
黄河是中国第二大河,也是世界上含沙量最大的河流,其携带的泥沙中有30%-40%淤积在河口并逐步向海洋方向延伸,逐渐形成了黄河三角洲近海河口湿地。近海河口湿地是海洋生态系统、河流生态系统和陆地生态系统的交汇区,具有重要的生态功能。黄河三角洲湿地微生物的研究对湿地的高效治理和稳定发展至关重要,与黄河流域的生态保护和高质量发展密切相关。在本论文中,我们以黄河三角洲湿地为研究对象,利用16SrRNA基因扩
学位
汞具有很强的流动性、持久性、生物蓄积性和神经毒性,已被公认为全球重点环境污染物之一。燃煤烟气Hg0的控制技术研究已经非常丰富,其中大部分是基于吸附或氧化吸收的方法。为了获得高效、持久和稳定的脱除效率,需要对吸附剂原料进行化学改性,在颗粒控制装置上游安装吸附剂喷射装置,以便将吸附剂喷入烟气中,这无疑造成燃煤烟气末端治理单元越来越复杂。高昂的运行成本低经济性限制了该技术的大规模工业应用。作为现有烟气污
学位
能源和环境为人类社会提供发展动力和生态基础。石油泄漏清理和含油废水处理是节能环保领域的重要课题。以吸油材料为载体的油水分离技术是上述课题的关键。现有吸油材料大多为传统石油基聚合物,存在过度消耗不可再生资源和造成塑料污染的弊端;同时,现有吸油材料的制备技术一般需要使用有毒的有机溶剂或化学试剂,易造成环境污染和危害生命健康。为此,本文提出利用以聚乳酸(PLA)为基体的生物聚合物和以超临界CO2为物理发
学位
随着工业化和城市化进程的快速推进,水污染、大气污染、土壤污染,以及噪声污染和电磁污染等各类环境污染问题日益严重,对自然环境和人类健康造成了威胁,亟需探索有效的治理方法和材料。石墨烯作为一种新型二维材料,由于具有大的比表面积、良好的化学稳定性、高的导电性能等优点,展现出相比于传统材料更加优异的性能,在治理环境污染问题方面的应用潜力逐渐被揭示。其中,将石墨烯片层组装成三维(3D)网络结构构筑石墨烯气凝
学位