基于线性排列电极的离心机内部颗粒分布检测方法研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:jiajiawangwang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卧螺离心机被广泛应用于现代工业中,使用其对混合液进行分离,以达到回收提纯、节约资源的目的。但由于卧螺离心机为不透明的密封筒体结构,操作人员无法直接观察到离心机内部颗粒的堆积、分布情况,因此,离心机的运转往往是根据经验法则进行控制的,没有实现最佳控制,同时也导致如果离心机内部颗粒堆积出现问题,不能及时发现、避免。基于以上要求和存在的问题,有必要对离心机分离时内部颗粒的分布情况做可视化检测,从而根据内部颗粒堆积情况,通过调节离心机旋转速度和进料口进料速度来实现在线优化。同时,检测离心机内颗粒的分布情况也是研究离心机运行机理的一种重要方法。本文主要研究基于线性排列电极的电阻抗层析成像技术在离心机内部颗粒分布可视化检测中的应用。主要研究内容包括仿真分析、电极参数优化、试验验证、线性电极EIT应用软件的开发这四个方面。仿真分析主要是对EIT模型中网格密度、电极尺寸等重要参数的影响进行分析,并对激励测量模式进行抗噪性分析和选择;电极参数优化主要是通过神经网络和遗传算法相结合来优化电极尺寸,提高成像质量;试验验证部分通过静态试验检测提出方法在颗粒堆积层高和分布流形两方面的检测能力,并通过动态试验对该方法在动态下检测的可行性进行验证;最后开发基于线性排列电极的EIT应用软件。仿真结果表明:1.随着网格密度的增加电压响应值趋于稳定、但灵敏度矩阵计算时间增长,重建图像相关系数先增大后减小;2.相比于相邻激励测量模式,文纳激励测量模式的抗噪性更好;3.电压响应值随电极长度的增加而增大,随电极宽度的增大而减小;4.灵敏度矩阵的条件数随电极长度的增加而增大,随电极宽度的增加而减小。电极参数优化结果表明:随着电极数增加,最优电极参数模型可检测的场域长度更长,重建图像相关系数更大,但采集数据所需的时间也更长。在试验验证中,本文确定了试验激励电流的频率,确定了模型有效成像范围。试验结果表明提出方法可以用于检测颗粒堆积层高和流形分布检测,同时通过对水涡旋的检测验证了提出方法具备动态下检测的能力。最后,本文使用Matlab GUI开发的线性排列电极EIT应用软件可用于仿真分析和对试验数据的图像重建。
其他文献
有害细菌和病毒等微生物危害公共健康,使得高效广谱杀菌剂的研究成为热点。其中AgO杀菌剂因其杀菌活性强且持久、不易产生抗药性而备受关注。但AgO纳米村料存在颗粒易团聚、比表面积低、带负电性而不能快速吸附细菌等问题,限制其实际应用。将AgO材料制成薄壳层的多孔球并利用荷正电材料对其进行改性使其带正电有望解决上述问题。本课题采用具有还原性的胶体碳球作为模板,研究具有薄壳层的AgO多孔球制备的可行性;在此
学位
氧化铝(Al2O3)增强铝基复合材料(AMCs)由于低密度、高比刚度、高比强度和优异的热稳定性而受到广泛关注。然而外加法制备Al2O3增强AMCs中存在增强体分散性差和润湿性差等问题限制了 Al2O3增强AMCs的发展和应用。原位法由于增强体颗粒小、分布均匀而且与基体界面结合良好,能够有效避免了外加法中存在的一系列问题,因而成为金属基复合材料的主流制备方法。但是目前原位法制备Al2O3增强AMCs
学位
随着科技的发展,能源成本不断上升、装备性能要求日益提高唤醒了人们对新型结构材料的探索。镁合金具有密度低、比强度高、弹性模量低、减振降噪好、对环境无污染等优点,备受国内外研究人员的关注。20世纪后期研发的Mg-Al-RE系合金不仅具有出色的高温抗蠕变性能也具有良好的室温力学性能和变形加工性能,为将其开发为变形镁合金提供可能。然而,目前报道的Mg-Al-RE系合金大多采用压铸工艺制备,对其轧制变形组织
学位
滚珠丝杠副具有定位精度好、传动效率高、运行平稳、可靠性高等优点,在数控机床、汽车传动、医疗器械、航空航天等领域得到了广泛应用。随着工业飞速发展,滚珠丝杠副也朝着高速、高精等方向发展,高速化的实现可通过增大丝杠副转速和增大丝杠副的导程来实现,受极限转速限制,丝杠副转速增加有限,因此增大丝杠导程就成为提高其驱动速度的首选。在驱动速度相同的条件下,使用大导程滚珠丝杠副不仅降低了丝杠副转速,而且也使得丝杠
学位
现代机械系统高速、高精度等的要求,运动副间存在间隙将严重影响机械系统运行的平稳性以及运动精度等。探索间隙对机构运动的影响规律以及运动副间磨损情况,对于高要求的现代机械系统的研究与发展,具有重要的意义和工程实际价值。本文的主要研究内容如下:(1)基于Hertz理论和弹性基础模型,通过引入与碰撞初速度、材料屈服刚度有关的恢复系数,得到与变恢复系数有关的非线性法向碰撞力,并建立了碰撞时包含非线性法向碰撞
学位
目的 探讨血清糖基抗原125 (carbohydrate antigen 125,CA125)和人附睾蛋白4 (human epididymis protein 4,HE4)在子宫内膜良恶性病变中的表达以及临床价值。方法 回顾性分析2016年1月—2021年3月厦门大学附属中山医院收治的子宫内膜癌患者93例,于手术治疗前进行血清CA125和HE4检测,设定同期厦门大学附属中山医院女性健康体检者82
期刊
近年来自动驾驶汽车的研究得到了飞速发展,在各个工业运载车辆的应用领域都可以见到智能车辆的身影,但目前城市自动驾驶汽车仍处于管制阶段。自动驾驶汽车在与人类交通参与者共享道路的混合交通环境下,行人的安全问题一直广受国内外研究学者的关注。当今技术主要研究俯视视角下行人的过街问题,但车载视角下的研究由于车载计算机算力不足、交通场景考虑不充分、行人信息不明显的问题,使得车载视角下的行人研究存在局限性。而一种
学位
无氧铜材料具有无磁性、优异的电导率和热导率,且其塑性和延展性非常好,因为其这些特点使其在电子工业中得到了广泛的应用。由于其质地较软导致其加工困难,无氧铜属于典型的难切削材料,其材料软粘导致加工过程中难断屑且易缠绕在工件表面,从而划伤工件,影响加工精度,并且对加工自动化过程有严重影响。本文主要采取低频进给方向振动车削来解决无氧铜切削断屑问题,并对其加工后工件的表面形貌进行仿真和影响规律的研究,为振动
学位
4H-SiC是一种出色的半导体,广泛应用于MEMS系统、微动开关、可调电容器、微加工的天线、生物医学传感器、光学器件、紫外线探测器等领域,应用前景广阔。因其宽带隙、高化学惰性与硬脆的材料性质导致其成为难加工材料,现在的热门加工方法是使用激光刻蚀4H-SiC。在众多研究中多是使用昂贵的飞秒激光进行烧蚀机理与理论研究,不利于加工方法的普及与民用化。本文采用1064nm红外波长纳秒激光对4H-SiC进行
学位
角接触球轴承因良好的性能,被广泛应用于各类旋转机械中。尤其对于高端装备制造业,几乎都是优先考虑角接触球轴承。本文以精密机床主轴为应用背景,建立低速轴承时变刚度模型和高速轴承频变刚度模型,分析影响轴承刚度的主要因素,并计算了转子系统动力学性能。主要研究内容和结论如下:1)建立了角接触球轴承低速运转时的时变刚度模型,分析了联合载荷作用下轴承内部的载荷分布,获得了一个滚动周期内刚度的变化规律。分析了结构
学位