花状CuS/碳基杂化材料的制备及其光响应抗菌性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:kulahai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在日常生活中,致病菌引起各类感染性疾病危害人们的身体健康,严重时可能导致死亡。抗生素治疗细菌感染是目前临床上普遍使用的手段。但是,抗生素的误用或者过度使用会导致耐药性细菌的出现。因此,需要开发新的手段替代抗生素或者减少抗生素的使用,避免耐药菌的出现。光响应型抗菌手段就是其中一种,主要包括光热抗菌疗法和光催化抗菌疗法。两者分别可以通过光激发材料产生热和活性氧(ROS)进行抗菌。硫化铜(CuS)是一种典型的光热和光催化材料,同时CuS中铜离子本身也具有抗菌和其他生物功能。因此,该材料在光控抗菌领域具有广阔的应用前景。鉴于CuS具有较好光吸收及光热转化效率、良好的生物相容性以及光催化功能,本论文主要研究CuS为基材的光响应材料的光热及光催化抗菌性能。考虑到花状纳米结构具有较高的比表面积有利于增强光吸收,可以有助于提高CuS的光热和光催化性能。本文中选择碳基材料(氧化石墨烯(GO)和碳量子点(CQDs))与其进行杂化,增强其光催化效率,最终实现光热、增强光催化和铜离子协同抗菌效果。1.通过一步水热法成功在GO表面生长了花状CuS,通过一系列表征手段证明了该杂化材料的成功制备;测试了该杂化体系的光热和光催化性能,并分析了光响应机理。体外抗菌实验显示光照15分钟其抗菌功效可以达到99%,其机理在于热、超氧自由基和铜离子协同抗菌作用;细胞毒性实验显示其具有良好的生物安全性。上述结果显示该杂化材料是一种极具前景的光响应抗菌材料。2.针对第一个实验方案中尺寸过大不易分散的问题进行优化,合成了小尺寸的花状CuS/CQDs杂化材料。通过一系列表征手段确定它的合成、光热和光催化性能。结果显示,CQDs的加入增强了CuS对于光的吸收并且降低了电子-空穴复合效率,使其表现出增强的光热和光催化效果。另一方面由于尺寸小的原因,纳米级花状CuS/CQDs也可以增加与细菌的接触从而提高材料的抗菌效率。
其他文献
光催化杀菌由于具有短时高效、杀菌彻底、毒副作用小等优势,具有极其广阔的应用前景,是目前抗菌领域的研究热点之一。近几年,已经有多种半导体光催化材料被用于抗菌领域。在众多的光催化材料中,二氧化钛(TiO2)由于具有原料来源广泛、制备工艺成熟、光催化效果好、无毒无污染等优点,是目前应用最广泛的光催化剂。但是,单纯的TiO2禁带宽度较大,只能在紫外光的激发下发挥光催化性能。一方面,长时间的紫外光照会对人体
学位
锌-空气电池因理论能量密度高(1084 Wh kg-1),安全可靠,成本低等优点成为最有前景的锂离子电池替代品之一,但较低的功率密度极大地限制了其商业化应用。锌-空电池的功率密度主要受限于电池放电时空气电极阴极氧还原反应(ORR),因此,开发高效的ORR电催化剂十分重要。我们通过模板刻蚀和高温热解法合成了具有分级多孔结构的S掺杂铁-氮-碳(Fe-N-C)催化剂,作为高功率密度锌-空气电池的ORR催
学位
超疏水涂层对水的不润湿性使其在自清洁、抑冰、防腐等领域有着巨大的应用前景。尽管超疏水涂层的研究发展很迅速,但是其距离大规模的工业化应用还有很大的差距,一方面是其与基体之间的结合强度限制,另一方面是其防腐性能的长效性。因此,合成一种具有优良粘结性能和防腐性能的超疏水涂层显得尤为重要。本文开发出了一种具备超疏水能力的涂层制备工艺,研究了所制备涂层对304不锈钢和Q235钢的腐蚀行为,分析了不同环氧树脂
学位
迄今为止,金属Cu是唯一可以直接将CO2电催化产生多种碳氢化合物的金属催化剂。然而,纯铜的CO2电化学还原选择性较差,大大限制了其应用。因此,需要对铜基催化剂表面进行工程设计以调控其电子结构,从而提升目标还原产物的选择性。研究表明,催化剂表面较高价态的Cuδ+往往有利于高能量密度的碳氢化合物的形成。然而,在CO2还原条件下,材料表面Cuδ+位点很容易被还原,使其CO2电还原性能发生衰减,所以维持表
学位
Allvac 718Plus合金是在Inconel 718合金基础上研发的一种新型γ′相强化型镍基变形高温合金,具有出色的高温力学性能和成形性,可弥补Inconel 718和Waspaloy合金服役温度之间的空白,目前已开始应用于航空发动机部件的制造。航空发动机涡轮盘高温运行时承受交变载荷应力的作用,极易引发疲劳变形损伤,因此研究合金的高温疲劳变形行为具有重要的现实意义。本文通过选取Allvac7
学位
为改善硅基气凝胶制备难度大、力学性能差与高温稳定性差等问题,本文基于有机/无机复合的结构设计思路,制备了两种有机/无机复合硅基气凝胶,包括聚硅氧烷/二氧化硅复合硅基气凝胶、聚硅氧烷/莫来石纤维复合硅基气凝胶。分别研究了两种复合气凝胶制备的反应机理,讨论了有机/无机组分比例等对复合气凝胶结构与性能的影响。所制备的有机/无机复合气凝胶具有较高的比表面积、较低的导热系数和较高的力学性能,同时具有一定的高
学位
管线钢具有较高强度和良好的断裂韧性,广泛应用于远距离输送石油和天然气。然而,海洋环境的复杂性一直是影响油气开采过程的重要因素。受温度、压力等多种因素的影响,管线钢会发生腐蚀,造成巨大的安全隐患。因此研究管线钢在海水中受温度、压力以及应力影响的腐蚀行为、阴极极化以及氢渗透行为迫在眉睫。本文通过动电位极化曲线、电化学阻抗谱测试、氢渗透实验,借助扫描电子显微镜和X射线衍射仪,研究了温度和应力对X70钢在
学位
细菌纤维素(BC)是木醋杆菌的分泌产物,碳化后为具有独特网络结构、丰富-OH官能团以及良好化学稳定性的碳纳米纤维(CNFs)。CNFs可被用作锂硫电池(LSBs)的硫正极材料。但是,CNFs对LSBs工作时产生的多硫化锂(Li PSs)仅具有物理限制作用。为了弥补这一缺陷,本文将BC与两种不同结构的钴基硫化物复合作为硫宿主材料,以提高对Li PSs的化学吸附能力,并通过杂原子N的引入增加化学吸附位
学位
甲醇制烯烃(MTO)反应作为一种很有前途的生产低碳烯烃的途径,受到广泛关注。其中SAPO-34催化剂在MTO反应中展示了优越的催化性能,SAPO-34(磷酸硅铝分子筛)具有Br(?)nsted酸性位点和chabatize(CHA)框架,有利于小分子的形成,阻止大分子通过,显著提高反应物和产物的扩散速率,抑制反应中积碳的形成,进而延长催化剂的催化寿命,使其对低碳烯烃如乙烯、丙烯等具有较高的选择性。局
学位
聚甲基丙烯酸甲酯(PMMA)作为目前最常用的骨水泥,在植入人体后可在骨和植入物之间具有良好的初级固定效果。为防止置换关节后产生的PMMA骨水泥无菌性松动,采用羟基磷灰石(Hydroxyapapite,HAp)改性PMMA骨水泥,可显著改善其力学性能、生物活性和生物相容性。而双相磷灰石(Biphasic calcium phosphate,BCP)的降解速率比HAp有优势,本文将研究BCP作为增强剂
学位