台阶式微流控装置中气泡和液滴的生成与调控机制

来源 :天津大学 | 被引量 : 0次 | 上传用户:eusnkk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近几十年来,利用微流控技术制备微颗粒引起了人们的广泛关注。能够大规模生产微小液滴的台阶式乳化微装置成为实现微流控技术从实验室走向工业生产的重要突破口,然而相关机理尚不太明确。本文利用高速摄像系统,探究了台阶式微流控装置内气泡和液滴的生成机理与调控机制。主要内容如下:研究了台阶式微流控装置中气泡生成的动力学机制。探究了气泡生成过程的动态界面演化现象。研究发现,气泡的生成过程可分为扩展、夹断和蓄能三个阶段。气相从微通道通过平台结构进入无壁面约束的大空腔,并在界面张力作用下,基于界面自由能的减小过程发生颈部的自发夹断。增大气相流量和液相流量、减小液相黏度使得气泡生成各阶段经历的时间减小。另外,随液相黏度的增大夹断阶段消耗的时间逐渐变长,使其成为气泡生成过程起主导作用的阶段。基于气泡生成机理,构建了包含毛细数、气液相流率、台阶宽度等参数在内的气泡体积预测模型。探究了台阶式微流控装置中液滴的生成动力学机制。探明了液滴乳化过程的动态界面演化现象。实验发现了由空腔内液滴堆积效应诱导产生的介于滴状流和喷射流之间的过渡流区。并通过改变平台宽度和空腔体积,实现调整滴状流流区大小的目的。分散相黏度的增大容易导致平台结构作用失效;在流型发生转变时,液滴尺寸骤增现象也随之消失。在滴状流下,液滴尺寸随分散相惯性力和黏性力的增大略微增大。构建了包含分散相韦伯数We和奥内佐格数Oh的液滴尺寸的半经验半理论预测模型。此外,发现提高分散相流量可以减小颈部断裂所形成的卫星液滴的体积,利于实现液滴产品质量的提升。揭示了台阶式微装置中气泡和液滴生成过程的共性和差异性。实验发现,气泡和液滴基于相同的生成机制,其差异源于分散相和连续相之间密度差的不同。由于密度差,气泡和液滴分别受到浮力和重力的影响。因此,水平放置芯片会导致气泡层或液滴堆积现象的产生,使得装置乳化通量以及液滴和气泡单分散性下降。竖直放置芯片后,浮力能够促进气泡的夹断过程;重力则会加快液滴排出避免堆积现象的发生。最后,基于目前对台阶乳化微装置中气泡和液滴生成机理与调控的理解,构思了新一代的高通量台阶乳化微装置系统。
其他文献
冷氢化过程是多晶硅生产中用来回收四氯化硅的重要一环,流化床反应器是其中的核心设备。挡板结构对流化床中的气固接触效果和反应性能具有重要影响。目前槽钢型挡板已被用于工业级冷氢化流化床中,但流化效果还有待提高。对于挡板结构的优化设计,若单纯采取实验手段需付出巨大的经济代价,因此通过计算流体力学(Computational Fluid Dynamics,CFD)方法建立数学模型来研究挡板结构对流化床反应器
学位
由于具有生物相容性、蛋白质吸附性、机械性能和化学成分可调节的优点,基于聚乙二醇二丙烯酸酯(PEGDA)的纳米凝胶被广泛用于药物递送和组织工程研究。532 nm激光聚合具有穿透性强、适用范围广和反应条件温和的特点,课题组前期的工作实现了532 nm精准聚合制备超小尺寸的纳米凝胶,但聚合速度低。因此,提高聚合速度的同时实现对聚合的精确控制,成为我们需要解决的问题。本文利用两亲性PEGDA单体在水中的自
学位
目前,在分离染料废水的工业应用中超滤膜的通量和选择性难以同时提升,二者此消彼长,我们称之为“trade-off”效应。为了改善膜分离过程中普遍存在的“trade-off”效应,本文将孔径均匀的聚丙腈超滤膜作为基膜,采用界面聚合的方法,设计并合成了水稳定性良好,具有一定孔径大小的共价有机框架(COFs),将其作为2D改性材料,分别搭建了2D+1D和2D+2D的混合多维组分,进而将合成的两种混合多维组
学位
开发高活性、高选择性和高稳定性的催化剂是目前生物质加氢脱氧研究的重点和难点。本文以设计合成高活性和高选择性级孔ZSM-5分子筛负载金属多功能催化剂为目标,以木质素模型化合物为原料,研究载体酸性、孔道和活性金属对级孔ZSM-5分子筛负载Pt(Ni)催化木质素衍生物选择性加氢脱氧生成环烷烃的影响规律。采用水热法合成了不同硅铝比的级孔ZSM-5分子筛,制备了Pt/ZSM-5催化剂,研究其对二苯并呋喃加氢
学位
随着化石燃料的日益枯竭,氢能源是世界范围内大力发展的新能源。在氢能源市场化过程中,需要大量建设加氢站,从而保证氢燃料电池车的行驶里程。加氢站氢源经增压、储存、加注等流程注入车载气瓶的过程中,氢气由于压缩和节流膨胀效应,温度明显升高,过高的温度会对加氢站氢气储罐和车载气瓶的安全造成威胁。因此设计开发在加氢过程中传热良好、结构紧凑、且在高压环境内安全可控的氢气冷却器很有必要。本文主要研究内容如下:首先
学位
煤制天然气是基于我国能源现状实现能源高效利用,解决环境问题的有效途径。合成气甲烷化过程是煤制天然气的关键环节,其中Ni因其甲烷化活性好、选择性高,是最常用的活性金属。γ-Al2O3因其比表面积大和孔隙率高有利于活性金属分散,是甲烷化中最常用的载体。合成气甲烷化反应是强放热反应,Ni基催化剂长期在高温下运行将会烧结和积碳,影响催化剂活性。针对该问题,需要深入理解Ni基催化剂上甲烷化反应机理以及高温烧
学位
液流电池是一种可以用于电网调峰、风能和太阳能等可再生发电的大规模储能装置。目前水系液流电池已经实现商业化应用,但是较低的能量密度和高昂的成本导致水系液流电池很难进行大规模推广。近些年快速发展的非水液流电池因具有更高的潜在能量密度和广阔的活性材料选择范围备受研究者们关注。然而目前非水液流电池采用的隔膜或多或少存在着离子电导率低、交叉污染严重、价格昂贵的问题。因此本论文将研究的重点集中在对非水液流电池
学位
研究卧螺离心机内颗粒流动行为对调整卧螺离心机的推料排渣过程,控制出渣口固相含湿率具有重要意义。强化卧螺离心机对物料颗粒的挤压作可以降低固相含湿率,但会导致螺旋叶片承载扭矩过大。为解决此问题,本文建立了螺旋转子颗粒流动测试实验系统,结合实验和离散元模拟方法揭示离心机结构及操作参数对颗粒返混特性、颗粒挤压作用力和螺旋叶片承载特性的影响规律,为卧螺离心机结构设计及操作参数优化提供指导。首先设计并搭建了单
学位
氢燃料电池作为一种高效的车用动力来源,能大幅降低排放,是内燃机和大容量二次电池的良好替代品。氢气来源仍是困扰燃料电池发展的一大难题。滑动弧等离子体重整制氢技术具有启停快、装置小、结构简单、原料广泛等优点,能够为燃料电池在线提供氢气。本研究利用滑动弧等离子体反应器对乙醇进行了部分氧化重整研究,考察了工艺条件对制氢性能的影响,建立乙醇空气部分氧化重整机理模型,并依据模型对部分重整过程进行有针对性的耦合
学位
随着移动通信、航空航天、交通运输及军事装备等领域的技术进步,各种高比能动力电池的开发已成为经济发展的迫切需求。Li/CFx电池具有极高的理论比能量(2180 Wh kg-1)、高安全性、稳定的放电电压、低的自放电率(<0.5%/年)等优点,得到了国内外的广泛关注。为了对于Li/CFx电池放电的动力学过程进行深入的探索,本文以密度泛函理论和分子动力学为工具,探究了Li/CFx电池中电解液和电极/电解
学位