高速列车直肋型制动盘内部通道传热特性研究

来源 :兰州交通大学 | 被引量 : 2次 | 上传用户:liushenglg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
伴随着高速铁路技术的飞速发展,列车的行驶速度不断升高,在运输更加方便快捷的同时也对列车的运行安全带来了挑战。由于速度高会使列车在制动过程中产生更多的热量,若热量不及时散出,可能会造成制动装置磨损疲劳甚至失效等问题,所以选择一种散热能力更强的列车制动盘对于列车的安全运行显得尤为重要。论文研究一种直肋制动盘内部通道的对流换热特性,通过设计不同尺寸、不同数量的散热筋,利用萘升华传热传质比拟原理,得到尺寸及数量等因素对制动盘内部通道对流换热特性的影响以及内部通道的对流传热平均特性。为了使试验模型更接近制动盘实际运行工况,实验时制动盘一方面随着滚轮以同样的转速旋转,另一方面制动盘与滚轮在圆形轨道上运动,这样就能更好的模拟列车运行时地面对制动盘内部通道流动的影响,进而影响到通道的传热,使实验数据更加接近列车制动盘通道传热的真实数据。论文结论如下:(1)直肋制动盘内部通道的平均努赛尔数的数值范围是3.58-30.21,且随着雷诺数的增大而增大。(2)在直肋个数、肋长度不变情况下,雷诺数相同时,肋高度越大,平均努塞尔数越大。(3)在直肋高度、肋长度不变情况下,雷诺数相同时,肋个数越多,平均努塞尔数越小。(4)在直肋高度、肋个数不变情况下,雷诺数相同时,肋长度越小,平均努塞尔数越大。
其他文献
在石油短缺及环境污染严重的今天,由于混合动力汽车(HEV)继承了纯电动汽车(EV)和传统燃油汽车(ICE)的优点,解决了纯电动汽车续驶里程焦虑问题,并且降低了整车的排放,因此混合动力汽车成为了新能源汽车重要发展方向。为了确保经济性的前提下提高整车平顺性,本文提出了基于多目标权衡优化的控制策略。本文的主要工作为:(1)分析了多模式混合动力汽车的结构以及驱动模式,接着参考长安的某款车型,根据整车基本参
RFID技术在图书馆管理以及档案管理方面的应用已经有好多年的历史,其无接触性、数据传输速度快、及盘点距离较远等多种优势给使用者带来了极大的方便。不过RFID的缺陷也较为
掺水乳化柴油因其具有降低Soot和NOx排放,并同时提高燃烧热效率的潜力,而受到了研究者们的广泛关注,其中掺水乳化柴油中特有的微爆现象,被认为是该燃料节能减排的重要原因之一。深入研究内燃机实际工况下掺水乳化柴油的节能减排机理及其蒸发喷雾过程中的微爆现象,具有较大的实际意义。本文利用电加热式定容燃烧弹台架,结合背光法学诊断技术和高功率频闪LED光源,以纯柴油W0和含水质量分别为10%,20%和30%
近些年来碳化硅(SiC)材料已经成为了功率半导体行业的一个研究热点,SiC功率MOSFET器件更是被广泛应用于工作在高压、高频尤其是高温高辐射环境的功率半导体器件领域之中。SiC
在目前巷道内湿喷混凝土的多道作业工序中,卸料作业是主要产尘点。针对卸料作业中卸料点“工业尘暴尘流”的现象及卸料产尘具有的阵发性、瞬时性等产尘特点,综合运用理论分析、数值模拟、正交试验、模拟实验等多种研究方法,以制备混凝土过程中所需原料中的水泥为研究对象,对混凝土卸料作业过程中的水泥尘产尘规律及控尘优化措施进行研究。根据对阵发性卸料产尘的尘源及产尘机理的分析,对卸料过程中影响产尘的四个因素:卸料斗和
蓝藻水华问题日趋严重,各类水体频频暴发蓝藻水华,给水生生态环境造成极大影响,威胁人类用水安全。金属有机骨架材料(MOFs)是一种新型的纳米材料,具有比表面积大、孔隙率高、热稳定性好、物化性质易调控等优点,被广泛应用于催化、吸附、光、电、磁和环境等众多领域。然而,目前还未有研究将MOFs应用于蓝藻水华的控制。针对MOFs材料抑制有毒有害蓝藻生长效果及机理未知等问题,本文以铜绿微囊藻为研究对象,根据藻
随着科技的进步与发展,大数据时代已经来临,人们获得了来自于大数据分析和应用所带来的便利的同时,因其带来的新的隐私威胁随之而来。其中位置隐私,因为其与用户的行为和当前
受启发于人类的经验迁移,迁移学习利用不同但相关的源域知识,解决当前域或目标域中的学习任务,目前已获得大量关注。现有迁移学习方法可分为单源和多源两种场景,基于单源的迁
近年来,由于多智能体系统在工程控制领域,如无人机系统、分布式控制、传感器网络、无人车编队控制、卫星集群、机器人群体、蜂拥中的协同行为、人机合作等的广泛应用而受到众
为了应对城市内涝问题以及城市水生生态环境退化的问题,我国开始积极建设海绵城市。生物滞留系统作为一种绿色基础措施受到广泛推崇,但该系统运行效果不稳定且脱氮机理未明。.本研究设计了阶梯式二级串联的生物滞留系统,研究了生物滞留系统出水水质特征,开展了设计参数的优化实验;利用15N同位素示踪技术和三维荧光技术分析氮素迁移转化机理;结合中试系统运行情况对其水文与水质性能进行了评价。通过研究生物滞留系统出水水