船舶静水兴波阻力及波形求解分析

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:en2113
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我们知道船舶快速性主要包括阻力和推进两方面,船舶定常兴波问题是研究船舶快速性的一个重要的方面,其主要包括船舶兴波阻力和船舶自由面兴波的求解。因此船舶兴波阻力和自由面兴波特性的研究对于船舶阻力的分析具有重大的意义。一个准确高效的兴波阻力求解方法对与船舶初始设计、船舶型线优化等工作有重要的意义,同时对于船舶自由面兴波特性的分析也对认识船舶兴波阻力机制,船舶兴波干扰等问题有很大的帮助。本文基于线性势流理论Neumann-Michell理论开发了船舶兴波阻力求解器,并结合本文提出的船舶自由面积分的新的计算方法,计算自由面兴波,为了验证该船舶兴波阻力求解器的可靠性,本文对Wigley、Series60、KCS、DTMB5415、Delft等单体、双体船型不同航速航行的工况进行了计算验证,同时本文还基于Kelvin驻相点理论,利用散波干涉原理对单体船自由面兴波最大兴波角进行了分析,并给出一系列的数值验证。  Neumann-Michell(NM)理论是Noblesse在2013年提出来的,该理论在线性势流理论的框架内,相比Neumann-Kelvin(NK)理论NM理论提出了一致的线性模型,保留了原 NK理论中略去的线性项,并对原NK理论中水线积分项的被积函数进行数学变换,消去了NK理论中的水线积分项,这样一来NM理论求解公式不再受制于NK理论中水线积分项对计算精度的影响,可以得到精确的结果,且其迭代求解方法省去了线性方程组的求解,效率更高。  船舶自由面兴波的求解主要难点在于傅立叶积分的求解,其被积函数对于远场场点是一个剧烈震荡的三角函数,我们知道数值积分中,如果被积函数震荡剧烈那么需要取很多的积分点来进行计算,这样会增加很大的计算量,而且也很难得到精确的结果,针对远场兴波的计算,本文基于Kelvin提出的驻相点理论利用数值方法得到近场、远场都适用的傅立叶积分变形公式,并结合NM理论开发了船舶兴波阻力和自由面兴波求解程序,并将该程序应用于Wigley、Series60、KCS、DTMB5415、Delft等船型的定常运动计算,并将兴波阻力、升沉、纵倾、自由面兴波的计算结果与实验值进行对比验证。  最后本文还基于Kelvin驻相点理论利用散波干涉原理对高速船舶兴波角小于Kelvin角的现象进行了分析,得出了最大兴波角与单体船航速的关系,同时利用本文开发的求解器对一系列单体船、双体船不同航速、不同片体间距工况下自由面兴波进行计算,并与散波干涉理论推导得到的最大兴波角结果进行比较,从数值角度对散波干涉理论进行了验证。
其他文献
本文通过对荣华二采区10
期刊
本文所研究的纳米测量机主要由纳米微位移运动机构和纳米测量控制系统两部分组成,其中纳米微位移运动机构包括纳米级步距压电微动台、驱动控制系统及压电陶瓷驱动电源;纳米测
在油田开采中,注水驱油技术是主要技术手段,它直接关系石油的产量。目前我国大部分油田采用一测一调注水方法,即一次下井只能对注水井的一层进行测调,这种传统方法劳动强度大、成
前视声纳视觉感知属于计算机视觉和人工智能的重要分支,它在水下潜器系统中具有不可替代的作用,主要承担目标探测、跟踪、避障等任务。无论在军事领域还是在民用领域,研究可
车牌自动识别是计算机视觉、图像处理与模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节。目前仍是国内外一个研究的热点问题,在实际中有
传统的人体葡萄糖浓度的测量主要是通过从人体取血后使用大型的生化分析仪或小型的血糖仪来完成。由于测量过程中会给病人带来一定的痛苦,因而不适用于长期连续的测量,同时由
本文通过对荣华二采区10
期刊
光谱技术通过光和物质的相互作用来了解物质结构及性质,可从疾病引起人体组织、体液和细胞的分子组成的变化,在分子和细胞水平上来诊断疾病。白血病是一种造血系统的恶性肿瘤。目前,对白血病的诊断主要是通过血象、骨髓象,但骨髓检查给病人带来很大的痛苦。某些急性白血病患者前期,无典型的血象和骨髓象改变出现,但有血象的异常表现,在这一时期全面的临床和实验室检查尚无法确立白血病的诊断。本文系统地研究了白血病患者的血
在显微光学成像领域中,自动对焦技术作为一项关键技术越来越受到青睐。近年来,针对显微切片扫描,研究人员主要采用离线对焦方法。该方法无法在任意横向移动时实时获轴向离焦量,需要在扫描前对整个样品进行焦面拟合建模,导致扫描效率低。一些在线对焦方法可以在任意横向位置获取离焦量,避免了焦面建模时间。研究取得了一定成果,但仍存在获取离焦信号延时、成本高、结构复杂等问题。针对这些问题,本文提出一种基于光电探测器的
深度光刻是LIGA工艺的核心技术之一,是获得高精度大高宽比微结构的关键工艺。随着LIGA技术在微电子机械系统加工工艺中的广泛应用,尤其是在生物科学技术领域的广泛应用,深度光刻