近距离煤层采空区下工作面覆岩破断规律研究

来源 :西安科技大学 | 被引量 : 0次 | 上传用户:zhiqi_xu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
开采采空区下近距离煤层时,煤层间采动影响相互叠加,导致各煤层间覆岩移动量、应力卸压区与集中区相互叠加影响,采场应力分布和岩层移动变得更加复杂,矿压显现规律与单一煤层开采差异显著,对采空区下工作面顶板控制和安全高效生产提出了更高的要求。为了得到采空区下工作面覆岩破断规律及其支护强度,采用理论分析、数值模拟、相似模拟和现场验证等手段进行研究,得到的主要研究结论有:根据煤层间距及上部煤层开采后对层间岩层的破坏情况,将下煤覆岩结构分为层间无基本顶、层间完全损伤基本顶、层间部分损伤基本顶和层间完整基本顶,并得到其分类判据。其中,层间无基本顶和层间完全损伤基本顶覆岩破断规律与单一煤层开采区别明显,层间部分损伤基本顶和层间完整基本顶覆岩破断规律接近于单一煤层开采。通过数值模拟得到,上部单一煤层工作面开采时,应力集中系数K不断增大,前期增长迅速后期缓慢。继续开采下部煤层,以层间完全损伤基本顶结构为例,开采初期K有小幅回落,中期平稳增长,后期降低,两煤层间塑性破坏区域变化不明显,说明下部煤层开采时已无明显周期来压。影响各类覆岩结构破断规律的主要因素为上部煤层底板破坏深度和煤层间距。以下峪口矿3煤23307工作面和3 下煤23307(下)工作面近距离煤层为相似模拟对象进行实验,分析得到23307工作面单煤层开采具有明显的周期来压阶段,平均周期来压步距19m;下部煤层23307(下)工作面回采时周期来压不明显,顶板随采随落,上部煤层采空区覆岩压实度增幅较大,垮落带向高层位发展达到26.12m,裂隙带高度为63.97m。结合现场取样实测根据理论计算得到23307工作面底板最大破坏深度为11.9m,判定23307(下)工作面顶板为层间完全损伤基本顶结构;现场矿压观测得到23307(下)工作面基本顶平均破断步距较小,为9.6m,破断时支架平均工作阻力为33.4MPa,整体上周期来压不明显,顶板随采随落。研究结果对采空下近距离工作面回采过程中顶板管理具有参考意义,有利于矿井安全生产。
其他文献
我国北方地区水源热泵系统运行广泛存在冬夏热不平衡问题。利用夏季较高温度的空气进行补热塔补热是技术经济比较可行的方式。提出了利用补热塔对水源热泵进行补热的方案,通过对机械通风式补热塔的研究,总结了补热塔对水源热泵系统补热的特点。阐述了补热塔复合式水源热泵系统的运行方式和发展趋势,并对补热塔复合式水源热泵系统的前景进行展望,为今后的研究与应用提供理论参考。本文研究对象是机械通风式逆流补热塔。为了研究的
我国经济发展步入新常态,能源行业降本增效的迫切性增强,能源行业市场化、一体化环境对企业的费用粘性行为会产生怎样的影响值得探讨。现有研究中,市场竞争对费用粘性的削弱
多介质逸度模型能够将自然界中污染物的源、迁移、归趋和汇等一系列环境行为完整的模拟,本文构建了两个III级环境水平下的逸度模型,并分别模拟六箱体系统中污染物的环境行为,
自从工业革命以来,化石燃料已经成为了维系社会发展的主要能源,然而其有限的储量和造成的严重污染迫使人们发展绿色、高效的新型能量存储和转化技术以满足社会的持续发展要求。燃料电池具有低温条件下快速启动、反应产物清洁、能量转换效率高等优势,被认为是最理想的能源转换装置。燃料电池中的阴极为氧还原反应(ORR),包含一个复杂的四电子过程,是整个催化反应的动力学速控步骤。虽然贵金属材料具有优异的ORR催化性能,
自1998年以来,我国陆续引进了铱星系统、全球星系统、ACeS系统、海事卫星系统等卫星移动通信系统,但由于这些系统完全受控于外方,在信息安全、通信资源保障等方面存在着重大
随着互联网的发展与普及,网络已经替代传统媒体,成为人们获取信息,新闻等的主要渠道。随之而来的,对于网络上的热点信息的监控和分析需求也就显得越来越重要,网络热点信息的
壁湍流相干结构是壁面摩擦阻力的主要来源,而如何减小壁面摩擦阻力在实际工程应用中具有重要意义。本文基于壁湍流相干结构的角度,采用高时间分辨率的粒子图像测速技术(TRPIV
多年来,分析检测一直追求简单、高效、绿色。然而,在大多数情况下,实际样品中含有较多的杂质,必须消除这些共存组分在测定过程中的影响和干扰,进一步浓缩富集被测物,才能进行
大气水汽是区域水循环的关键,也是区域降水的来源。为进一步研究西北地区空中水循环及大气环流场的变化,同时也为验证不同大气水汽资料在西北地区的适用性,本文选取1958-2013
明确玉米主要农艺性状的基因效应,结合分子标记辅助选择技术,对定向改良玉米产量性状,提高玉米品质,挖掘现有遗传资源,选育玉米新品种具有重要的参考价值。通过QTL定位对与玉