H在Pd基核壳结构中的调控作用及其电催化性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:liutaostdio
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
外延生长的贵金属核壳结构由于其独特的物化结构引起了广泛的研究兴趣。核与壳原子之间的晶格失配及功函的不同,通常会带给核壳结构表面的几个原子层应变效应、配体效应等,影响整个催化反应动力学。核壳结构通过调整核的大小、形状、组成及壳的种类、厚度等,为实验优化催化性能带来更多可能。本论文通过调控钯基纳米材料的表界面结构,显著改变了其在分解水析氢,甲醇氧化等电化学反应中的催化性能,结合材料表征与理论计算,详细讨论了性能变化的内在机制,为设计和制备高性能催化剂带来了新的思路。主要研究内容和结论如下:1.通过溶剂热处理,实现Pd纳米立方体到晶格扩展的β-Pd H0.43结构的转变。通过配体交换改变了Pt前驱体的还原电位,分别以Pd和β-Pd H0.43为种子,在室温下控制反应时间有效调控了Pt原子生长在Pd和Pd H立方体表面的厚度,得到了Pd@Ptx和Pd H@Ptx立方体,并对其进行了详细的研究。2.在Pd@Ptx的基础上,通过溶剂热法进一步用DMF处理,得到了间隙H原子修饰的Pd@Ptx-H纳米立方体,并对通过两种不同H掺杂途径得到的Pd H@Ptx与Pd@Ptx-H进行了深入的研究。结果表明,Pd@Ptx掺杂H原子的过程中,表面Pt和Pd原子的位置发生扰动,影响了析氢反应中间体的吸附能,并导致析氢性能上的差异。3.利用多元醇法,通过两种不同的H原子掺杂途径成功得到了表面光滑的Pd@Rh-H和Pd H@Rh纳米立方体,展现出优于商业Pt/C的甲醇氧化性能,并详细阐释了间隙H原子修饰核壳结构的本质及其提升甲醇氧化性能的机制。4.通过种子介导法,成功合成并将氢原子掺入以高指数晶面{730}面包围的Pd凹纳米立方体中,并在活性和耐久性方面均表现出增强的MOR性能。
其他文献
“自下而上”和“表面限域”相结合是表面在位化学构建功能性纳米结构的有效手段。借助扫描隧道显微镜,可以在原子尺度上实现反应物、中间产物和最终产物的实空间成像。与自组装相比,表面纳米结构是以共价键为连接方式,具有较强的化学稳定性和热稳定性,优异的机械、生物、光学和电子特性,这已经推动了生物、材料和医疗领域的发展和创新。本论文从表面限域的席夫碱偶联反应出发,基于其具有刺激响应、自修复和微环境适应性等特点
学位
布拉格反射镜是最常用的一维光子晶体,其结构简单、易于制备,通常由两种折射率不同的材料沿着一个方向交叉重复堆叠而成。在实际应用中需要实现高反射率,而影响反射率的主要因素是堆叠的周期数和高低层材料之间的折射率差。现有的制备方法必须考虑紧密的晶格匹配,以避免位错对整个结构的质量产生不利影响。通常对于高匹配度的晶体而言折射率差相对较小,需要制备大量周期才能获得高反射率,这不利于大规模集成光电路的生产。因此
学位
化石燃料的急剧消耗所带来的能源危机和环境污染等问题极大地促进了新型可再生能源的发展。而电催化技术以其高效、条件温和等特点而越来越多地被应用于各种新能源领域当中,如电解水、金属-空气电池、电催化CO2还原等等。电催化技术的核心在于设计合成具有更低过电位、更高催化活性、选择性和稳定性的电催化剂。在过去很长一段时间,人们简单地认为起到催化作用的就是所使用的催化材料本身,而忽略了催化材料自身在强氧化或强还
学位
近年来,水体污染和大气污染是人类社会面临的主要环境问题。其中含有机污染物工业废水的大量排放,以及温室气体二氧化碳的排放,严重威胁着人类的生存环境。因此,如何高效地从水中去除这些污染物,如何实现二氧化碳的综合利用及绿色转化,成为了科研工作者的研究热点。设计开发多功能材料,实现水体污染和大气污染的综合治理,是解决上述问题的重要手段。本论文以此为目标设计合成多功能化的季磷盐纤维,利用其结构特点,实现对水
学位
光催化作为一种绿色技术被公认为是开发可再生能源和环境治理的有效方法。但光响应范围窄和光生e-和h+的快速重组是光催化的主要问题。因此,迫切需要开发高效稳定且易于生产的光催化剂。层状ZnIn2S4作为一种三元硫化物,由于其环境友好性以及出色的化学稳定性而在光催化领域引起了广泛关注。ZnIn2S4具有与g-C3N4匹配的带隙结构。通过构建ZnIn2S4/g-C3N4异质结,有利于实现光生载流子的高效分
学位
双极性有机场效应晶体管(a OFETs)是集成电路互补反相器中的关键元件,近年来引起了极大的关注。双层p-n异质结是实现稳定、高性能双极性有机场效应晶体管的有利结构,但在常见的基于多晶薄膜的双层异质结中不可避免地会发生层间混合,因而其双极性器件的性能比相应的单极性器件低。为了克服层间混合问题,本文提出以二维分子晶体(2DMCs)为模板诱导制备p-n异质结的方案。本研究发展了一种制备二维分子晶体的新
学位
环丙沙星(CIP)作为一种喹诺酮类抗生素,由于具有广谱的抗菌活性和优良的杀菌效果,已经被广泛用于治疗细菌性感染疾病。然而,人体或动物体摄入的CIP不能被完全吸收,未被吸收的CIP会通过粪便或尿液排出体外,这对环境造成了严重污染。目前已经在地表水、地下水及饮用水中检测到CIP的存在,由于水中残留的CIP即使在较低浓度时也能诱导抗生素耐药性基因的产生,因此CIP的滥用已对生态环境和公共安全造成了严重的
学位
与单一有机组分相比,由两种或两种以上π-共轭分子组成的多元有机晶体通常显示出更为优越的光电性能。其中,有机合金或电荷转移(CT)共晶因为其结构及功能的易裁剪性,引起了研究者的广泛关注。本论文旨在尝试将有机合金和CT共晶结合起来,构建组分及功能可调的二元有机CT合金。本文分别选择常见的π-共轭化合物苝(Pe)和9,10-二氰基蒽(DCA)作为电子给/受体(D/A),基于良/不良溶剂扩散诱导的共组装法
学位
冠心病严重威胁着人类健康,现已成为全球人类的第一大死因,及时准确诊断和治疗冠心病具有重要意义。冠心病患者常表现出心脏电生理信号的不稳定性,而动态心电图能够监测出这种不稳定性,因而是用于冠心病诊断的重要手段。且与其他监测手段相比较,动态心电图监测具有无创、简单、费用低等突出优点。现已开发出许多柔性皮肤电极,这些电极可通过与皮肤形成紧密接触而保证信号采集的稳定性。但是,此类电极的低表面粘附性限制了其在
学位
人类社会步入21世纪后,以能源为支撑的经济得到了迅速发展,伴随而来的是严重的环境污染和能源危机。大力寻求可替代化石燃料的二次能源同时提升可再生能源比如太阳能利用率成为我国发展的战略目标。而光电催化分解水技术利用半导体光电极直接将太阳能转化成清洁和可再生能源(例如氢),可有效解决能源需求并降低对环境的污染。高效、稳定的半导体光电材料设计与制备是实现高性能光电催化水分解的关键。该技术目前面临的最大挑战
学位