论文部分内容阅读
针对南方山地果园种植区域地形条件较差,难以形成比较完善的交通运输体系,并且一般公路上通用的运输车只具有运输货物的功能以及运输车体积较大不利于在山地果园种植区域工作;为了提高丘陵山地果园的运输工作效率、增加经济效益、降低果农的搬运劳动强度与减少果园所投入的生产成本,基于本实验室研制的第三代山地果园轮式运输机,本论文设计了一种具有自卸功能的举升机构,通过举升机构举升货箱至一定的角度来达到倾卸货物的目的,由此改装设计的山地果园轮式自装卸运输机具有运输、倾卸货物的双重功能;此外,随着计算机技术广泛应用,更多现代化设计手段已经普遍存在机械设计研发过程中,运用ADAMS和ANSYS等软件对所设计的举升装置进行仿真分析及优化,这不仅仅缩短了开发机械装置的设计时间,也改善了举升机构的工作性能、减小了举升机构各零部件的质量、降低了研发成本。针对山地果园实际山地地形:0°、5°、10°、15°四种坡度,本论文首先初步运用图解法确定该举升机构的三角臂、拉杆、副车架、液压系统等主要零部件的结构尺寸以及举升机构各关键点位置分布,然后采用虚拟样机技术和有限元分析法对其进行参数化建模、仿真、优化及改进。通过上述步骤,所得到的自卸运输机举升机构整个举升过程的举升推力随时间变化曲线能够满足理想液压特性曲线,然后再选定合理的液压缸,重新布置举升机构关键点的位置及检验关键零部件的强度和刚度,从而使自卸举升机构满足整体设计要求。本论文首先确定举升机构各零部件相对轮式运输机的分布位置,运用Solidworks三维软件对自卸运输机举升机构的各个关键零部件进行实体建模,再对其进行虚拟装配、干涉检查分析,结果表明传统图解法设计的举升机构能够正常运动且不存在干涉现象;运用ADAMS软件对自卸运输机举升机构进行举升过程的运动学和动力学分析,得到0°、5°、10°、15°四种斜坡下举升机构工作情况,对这四种分析结果进行对比分析,结果显示0°斜坡的举升推力最大,其值为16428N。基于ADAMS的举升机构运动学和动力学分析结果,运用ADAMS确定举升机构5个关键点,然后对举升机构参数化建模参数化及优化处理,得到:举升推力最大值是7800N,降低幅度达55.12%左右,且此时工作液压特性曲线呈先升高后降低趋势,满足理想液压特性曲线,拉杆质心的最大角速度和最大角加速度优化前分别是9.2°/s、6.0°/s,优化后分别是6.0°/s、1.35°/s~2;三角臂质心的最大角速度和最大角加速度优化前分别是9.5°/s、6.5°/s~2,优化后分别是5.5°/s、2.5°/s~2,且优化的二者曲线曲率变化较平缓,这增强了举升货箱的稳定性;基于ADAMS的举升机构仿真分析、优化结果,应用ANSYS对自卸举升机构关键零部件:三角臂和拉杆进行强度和刚度校核分析,并对其进行结构优化处理,得到:拉杆所受最大应力大小为23.199MPa,最大位移变量是0.028mm;三角臂优化后最大应力值是327.68MPa,最大变形量是0.82mm,而三角臂的质量从优化前4.68kg减小到优化后3.67kg,降低了20.24%左右,而三角臂抗变形能力也因此增强,结构材料分配更合理三角臂结构质量减轻,并且三角臂抗变形能力也因此增强,满足轻量化设计要求。本论文的研究成果可以为山地果园轮式自卸运输机的设计研究、生产提供指导,更有实用性。