异质结构介晶TiO2纳米棒阵列的可控制备及光电化学分解水性能研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:dragondk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技的进步和人类社会的发展,能源危机与环境问题备受人们的关注。为解决这些难题,寻找高效、清洁和资源丰富的可再生能源是人类亟需完成的任务。光电化学(PEC)分解水是一项依靠太阳能和电场驱动,且不需要消耗化石燃料的具有前景的技术。在众多光阳极材料中,二氧化钛(TiO2)具有廉价无毒、生物相容性良好、合适的能带结构等优点。但其可见光吸收率低,载流子快速复合等问题限制了TiO2在光电化学分解水中的应用。因此本文专注于对TiO2的缺点进行改进,通过半导体复合、引入助催化剂和贵金属修饰的方法,来提高TiO2的光电化学分解水的活性。主要研究内容如下:(1)通过水热法在介晶TiO2纳米棒阵列(TiO2NAs)上复合钛酸钙(Ca TiO3),得到了异质结构介晶TiO2-Ca TiO3纳米棒阵列。通过一系列表征对异质结构介晶TiO2-Ca TiO3纳米棒阵列的形貌和结构进行了探究,结果显示该异质结构均匀生长在F掺杂的Sn O2(FTO)基底上,呈现出一种核壳结构,同时维持着良好的介晶纳米棒阵列结构。研究结果表明,异质结构介晶TiO2-Ca TiO3纳米棒阵列在水的分解电压1.23 V vs.RHE处光电流密度达到了1.20 m A/cm~2,相比未改性的TiO2(0.75m A/cm~2)提升了60%。TiO2光电流密度的提升归因于形成异质结,降低了光生电子与空穴的复合率,促进载流子的分离与传输,从而提升了TiO2的光电催化性能。(2)利用电沉积法合成了复合结构二氧化钛-钴铝双层金属氢氧化物(TiO2-Co Al LDH),通过一系列表征对复合结构TiO2-Co Al LDH的形貌和结构进行探究,显示Co Al LDH纳米片均匀沉积在介晶TiO2纳米棒阵列上。研究结果表明,复合材料TiO2-Co Al LDH在水的分解电压1.23 V vs.RHE处光电流密度为0.92m A/cm~2,相比未改性的TiO2提升了34%。TiO2光电流密度提升归因于负载了Co Al LDH,加速水的氧化,提高了表面注入效率,从而改善了TiO2的光电化学性能。再通过电沉积法将贵金属钌(Ru)负载在复合材料上,形成TiO2-Co Al LDH-Ru三元复合材料,光电流密度达到1.97 m A/cm~2,相比未改性的TiO2提升了近2倍,显示了TiO2-Co Al LDH阵列的巨大潜力以及TiO2-Co Al LDH-Ru三者之间协同作用的优异性。
其他文献
棉花生产的天然纤维是纺织工业的重要原料之一。天然彩色棉是指在自然条件下纤维能够呈现出一定色泽的棉花。棕色棉作为彩棉的主要类型,相关研究和应用都最广泛。相比于白棉,棕色纤维减少了纺织过程中所需的漂白印染等工序,进而减少了工业污染和纺织成本。因此,棕色棉成为一种环保资源,同时兼具纺织成品颜色自然、质地柔软、保温等特点。然而,天然棕色棉的产量和纤维品质较白棉差,单纯依靠传统的育种方法很难实现棕色棉产量和
学位
土壤侵蚀威胁全球粮食安全,影响生境质量,阻碍可持续发展。随着粮食需求增长与耕地土壤保护的矛盾日益凸显,防治耕地土壤侵蚀已成为农业生态领域热点问题。各国粮食需求通过农产品贸易得到满足的同时导致耕地土壤侵蚀压力的潜在转移,致使本地发生的侵蚀与异地农产品消费之间存在空间分离现象。明确国际农产品贸易对全球耕地土壤侵蚀的影响对于深入理解土壤侵蚀演变机理、提出合理的侵蚀治理策略意义重大。本研究以2017年全球
学位
病毒流行不仅严重危害人类的健康,而且造成巨大的经济损失,发展抗病毒药物是控制病毒流行的主要手段之一。金属纳米材料具有抗病毒活性及良好的生物相容性,未来有望发展成为新一代的抗病毒药物。如何进一步提高金属纳米材料的抗病毒效果是当前需要解决的一个关键问题。本论文以中药活性成分(甘草酸(GA)、姜黄素(Cur))为修饰试剂,合成了甘草酸修饰的金纳米粒子(GA-Au NPs)及姜黄素修饰的铜簇(Cur-Cu
学位
随着现代社会的不断发展,化石燃料的使用不可避免地造成了环境污染以及能源危机等问题,所以亟需开发绿色、经济以及高效的新型能源来替代化石燃料的使用。氢能源具有来源广泛、危险系数小且二次燃烧无污染的优点,是新型能源的最佳选择。光电化学(PEC)分解水制氢是目前最具潜力的制氢方案,其利用水资源与太阳能这类十分丰富的资源;产物主要为氢气与氧气,对环境无污染。因此,光电化学(PEC)分解水受到了研究者的广泛关
学位
抗生素抗性基因(Antibiotic resistance genes,ARGs)广泛分布于土壤、水体和空气等环境介质中,在近年被国内外环境科学家定义为一种新型环境污染物,严重威胁着全球生态安全。传统畜禽养殖模式高度依赖抗生素,使畜禽肠道微生物选择出高丰度和高多样性的ARGs,其通过养殖粪污或粪肥扩散进入自然环境,促进了环境中ARGs的蓄积。我国自2020年实行饲料禁抗,但近年在饲料禁抗实践中却发
学位
积分器在模拟电路和脉冲数字电路中扮演了重要角色,它的功能包括实现波形转换,相移以及消除失调电压等等。然而,运算放大器所引入的零点漂移以及电容器的充放电过程中产生的固有泄漏误差,使得传统的电阻-电容积分器(RC积分器)无法胜任较长时间内的高精度的积分运算工作。为了解决这一问题,许多基于RC积分器的改良方案被设计并广泛使用在托卡马克装置的积分电路中,但这些改良方案的代价是更复杂的电路和更高的功耗,并且
学位
内毒素是一种外源性致热原,进入机体易导致炎症、发热等症状,严重时危及生命。因此,在环境、食品以及医药等领域对内毒素进行检测和去除显得尤为必要。建立内毒素的检测和去除方法离不开良好的亲和试剂。聚合物纳米颗粒作为一种高比表面积,高吸附能力的亲和试剂在生物分子的检测和去除方面应用广泛,其优越性能取决于侧链结构中的功能单体。核酸适配体作为一种高吸附力,高特异性的亲和探针已经应用于内毒素的检测。因此,本项目
学位
通过活化过硫酸盐(PDS/PMS)产生SO4·﹣可以显著去除水体中污染物质,但该工艺的固有缺陷限制了其广泛使用。例如,其成本太高;过硫酸盐较稳定,残存于处理过后的水体中,可能会引发未知的生化反应,对环境具有毒害作用;活化的催化材料多具有环境毒性。近年来,运用亚硫酸盐产生SO4·﹣降解有机污染物成为研究热点。与过硫酸盐相比,亚硫酸盐造价便宜,在环境水体中可以直接与溶解氧反应进而被完全消耗,对水体生态
学位
不同豆科物种种子贮藏物质含量差异较大,大豆和鹰嘴豆种子平均含油量分别为20%和6%,平均淀粉含量分别为2%和44%。种子油脂和淀粉生物合成所需的底物大部分均来自以糖酵解为主的碳代谢产物,深入挖掘导致大豆和鹰嘴豆种子油份和淀粉含量差异的可能分子机制,对改良大豆和鹰嘴豆种子含油量和淀粉含量及其组成具有重要经济价值。目前,关于大豆油脂和鹰嘴豆淀粉的合成相关基因及其调控机制研究比较匮乏,特别是microR
学位
氮在茶树全株中的含量约占干重的4.5%,是游离氨基酸、咖啡碱等茶叶品质成分的重要组成部分。然而,高水平施氮对环境有负面影响,因此,选育氮高效茶树种质是提高茶园氮利用效率的根本途径。自噬在植物体内氮循环中起着关键作用,具有提高氮利用率的潜力,许多自噬相关基因ATGs参与了自噬过程。本研究首先明确了自噬基因和蛋白在茶树不同成熟度叶片中的表达。然后从茶树基因组中鉴定出ATG3亚家族的两个同源基因,CsA
学位