Pb2+、Zn2+和Cd2+在尿素-高岭石插层复合体中吸附特征的分子模拟

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:huangfei1117
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
鉴于铅锌矿等金属矿区土壤重金属污染问题日益严重,其治理已成为非常有价值的课题研究,找出一种既经济又快速有效的方法是很有必要的。目前,物理吸附法是治理金属矿区土壤重金属污染最广泛的方法之一。黏土矿物因其结构特殊性、经济效益高、分布广泛和容易大量开采等优势逐渐进入人们的视线。高岭石虽具有分布广、储量多和便于获得等优点,但去除重金属离子的效果不是很理想,有研究表明,对高岭石进行尿素插层改性可以提高其吸附能力和稳定性。本文通过Materials Studio模拟软件,选用对人体无害,可作为化肥且质优价廉的尿素作为插层剂,构建高岭石-尿素插层复合体模型,根据高岭石-尿素插层复合体的XRD和热重分析,通过计算间接推导出复合体中高岭石层间域可插入的尿素分子的数量为8、9和10。在此基础上,运用分子力学、蒙特卡洛以及分子动力学等模拟方法,在268K、283K和298K的温度下分别对Pb2+、Zn2+和Cd2+进行单独吸附和竞争吸附研究并做出比较。结果表明:三种不同尿素分子含量的复合体单独吸附时都是放热的物理吸附行为,吸附量和吸附热都有Pb2+>Cd2+>Zn2+的趋势;在对重金属离子Pb2+与Zn2+和Zn2+与Cd2+的竞争吸附中,其吸附量和吸附热都随温度的增加而降低,且Pb2+与Zn2+之间的相互作用大于Zn2+与Cd2+之间的相互作用;三种复合体对重金属离子单独吸附与竞争吸附时都会形成铝氧层、硅氧层以及尿素层三个吸附层,当它们对重金属离子单独吸附时,同一条件下尿素层的吸附作用最小;三种复合体对重金属离子Pb2+与Zn2+和Zn2+与Cd2+竞争吸附时,重金属离子分别占据有利吸附位置,在吸附过程中发生竞争吸附效应。三种复合体的径向分布函数与吸附热均表明,吸附热越大,结构越稳定,自扩散系数越小。从吸附量和吸附结构稳定的角度来看,当尿素分子含量为9时,复合体单独吸附和竞争吸附时的吸附量和吸附后的结构稳定性都是最优的,更适合作为处理土壤重金属污染物的吸附剂。
其他文献
防水锤空气阀是一般复合式空气阀技术进步的产物,由于加入了节流塞这一缓冲装置,可以更好的防止爆管和弥合水锤发生,是管路防护水锤的一种重要设备。防水锤空气阀无统一的设计生产标准,内部结构复杂且形式多样,即使是同种规格的空气阀,其进排气特性也多有不同,使得水锤防护效果有明显差异,依靠经验选型已不能满足工程的安全性及经济性要求。面对长距离输水工程中该阀的重要性和广阔的应用前景,基于研究现状,透过爆管频繁发
学位
为防止大型LNG储罐遭受地震等自然灾害的影响,往往采用在桩基和储罐主体之间安装隔震垫的办法。但在隔震支座安装作业时,二次灌浆平均麻面率达到了23.59%,单桩最大麻面率甚至高达44%。经过分析和研究发现主要是由于在二次灌浆过程中,预埋板下部气体淤滞难以排出所导致,与灌浆料性能和周围环境因素均无关系。因此采取对预埋板和二次灌浆施工流程的办法进行改进,经实施后,二次灌浆平均麻面率降低至7.32%,节省
期刊
糠醛作为一种重要的生物质平台化合物,可以合成一系列高附加值化学品,是生物质转化为化学品之间的桥梁。然而受限于糠醛的生产技术,工业上得到的糠醛原料液是一种低浓度多组分的水溶液。因此,糠醛的高效富集是推进糠醛工业发展的重要一环。相较于传统精馏分离技术,渗透汽化技术在低浓度有机物分离方面表现出明显优势。渗透汽化技术是通过膜材料对原料液中不同组分间亲和性和传质阻力的差异实现选择性分离,分离过程不仅能耗低、
学位
<正>习近平总书记在3月15日召开的中央财经委员会第九次会议上强调:实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革,要把碳达峰、碳中和纳入生态文明建设整体布局,拿出抓铁有痕的劲头,如期实现在2030年前碳达峰、2060年前碳中和的目标。实现碳达峰、碳中和,对我们这个最大的发展中国家来说是一场硬仗。从碳达峰到碳中和,发达国家大体上需要50至60年的时间,而我国仅有30年左右的时间。
期刊
随着日益严格的环保要求,硫氧化物污染问题备受人们关注。其中,以羰基硫(COS)为代表的有机硫因其存在广泛、性质稳定、脱除困难成为人们的研究热点,其存在不仅腐蚀设备管道,降低催化剂的使用寿命,若直接排放还会参与光化学反应产生大量的SO2造成环境污染。因此,开发具有脱硫效率高、经济性好、化学性质稳定的高效脱硫溶剂具有重要的环保意义。查阅文献可知,醇胺法脱硫是目前COS脱除应用最广泛的技术,醇胺种类较多
学位
络合铁法脱硫技术是湿式催化氧化脱除硫化氢技术的典型代表,近年来该法由于副盐生成速度缓慢的优势在焦化行业受到认可。但是实践表明,络合铁技术同栲胶法和PDS法一样,也存在硫代硫酸盐、硫酸盐等副盐累积问题。本课题组针对该问题,从源头出发,分别对栲胶法和PDS法的析硫反应进行了研究,研究结果表明,在栲胶和PDS两种脱硫体系中,析硫反应,即从HS-到单质硫的反应过程不是简单的基元反应,而至少需要两步完成:H
学位
超级电容器作为一类新型的电化学储能器件,具有安全性高、功率密度高、循环寿命长等众多优点,被认为是极具广阔应用前景储能器件。然而,较低的能量密度限制了其大规模商业化应用。电极材料作为超级电容器的关键材料之一,在很大程度上决定了其能量密度。本研究选择镍钴硫化物作为电极材料,通过材料复合、形貌设计、成分多元化策略,制备了高性能柔性NiCoS/活化碳布(Activated Carbon Cloth,ACC
学位
信息化时代下的高校图书管理工作,首先要求图书管理员营造良好阅读环境,改进图书流通模式,让图书馆的书籍借阅变得更易操作;在图书管理工作当中,图书管理员要够做以读者为本;图书管理员要整合图书馆馆藏资源,加大图书馆馆藏利用率,实现院校图书馆和社会图书馆的接轨。信息时代下的高校图书管理员工作要以读者为中心,让图书管理工作与读者的实际需求有效契合,让图书管理工作真正为读者服务。
期刊
近几十年来,锂离子电池已经大规模化地应用在3C数码产品、电动交通工具和大型储能系统等方面。然而,锂资源在地壳上的丰度低、分布不均以及需求量大等问题,使得锂离子电池的发展受到很大程度上的限制。而钾与锂位于同一主族,物理化学性质类似,且钾在地壳中的含量更加丰富,钾离子电池逐渐成为人们研究的热点。在钾离子电池正极材料中,层状过渡金属氧化物具有理论容量和工作电压高、制备方法简便以及环境友好等优势,是一类有
学位
当前国内外对于大幅度降低二氧化碳排放并尽快达到“碳中和”已有广泛共识,需要更广泛地利用水能、太阳能和风能等清洁能源,因此如何更好的储存这些间歇性的清洁能源成为亟待解决的问题。在过去的二十余年,锂离子电池因其具有循环寿命长以及较高的能量密度等优点一直备受关注,但随着社会对储能器件的需求不断增加,锂资源的匮乏以及成本的限制对未来锂离子电池进一步大规模应用提出了新的挑战。钠离子电池得益于其具有丰富的Na
学位