基于内建电场增强策略的半导体光催化性能和载流子传输机理研究

来源 :南昌航空大学 | 被引量 : 0次 | 上传用户:sanyueyusi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太阳能光催化是光和催化剂同时作用下所进行的化学反应,也是近年来能源与环境领域研究的一个热点,其涉及到的关键科学问题包括光电转换、载流子传输动力学以及光化学反应等多个领域的研究。然而,目前光催化反应的量子效率仍然较低。其中,光生载流子的分离与迁移是关键限制因素。材料自身形成的内建电场(IEF)直接作用于光生载流子,可以实现电子和空穴的有效分离,同时外部场源的引入,影响了催化剂体内或表面的电荷分布,使载流子分离效率进一步提高。本论文针对光催化过程中光生载流子分离及迁移的驱动力不足的问题,提出了利用材料的缺陷调控、异质结的构建以及外加磁场诱导等方法,设计和制备具有IEF增强作用的半导体光催化剂,并通过降解污染物和分解水产氢等手段评估其催化性能。此外,探究了在光催化剂中增强载流子动力学的方式,为今后定向合成具有强大IEF和丰富的外场响应作用的半导体催化剂提供了新的见解和思路。本论文的主要内容如下:1.通过调节g-C3N4光催化剂中掺杂元素的种类和比例,调控了半导体的IEF强度,有效增强了光催化过程中载流子的分离和传输。研究发现,将适当浓度的Bi、S元素引入二维g-C3N4的骨架结构,可有效调节IEF强度,使得最佳比例样品10 BSCN具有增强的IEF,从而实现液相环境中四环素(TC)等污染物的高效降解及优异的光催化析氢性能。此外,经溶剂热回流后的Bi、S共掺g-C3N4样品具有良好的化学稳定性,能够减少因杂原子共掺杂而导致的纳米片结构缺陷,从而为构建高活性及稳定的g-C3N4基材料提供了新的解决方案。2.针对传统I型异质结因界面结合不紧密及电荷分离驱动力不足而导致的光生载流子分离效率不高和氧化还原能力降低的问题,我们通过离子交换策略构建了具有较大接触面积和独特能带结构的I型Bi OBr/Bi2S3高低异质结,实现了对于光生载流子在不同组分间的快速迁移。研究发现,通过熔融状态下的阴离子交换,可促进Bi OBr与Bi2S3的紧密结合,实现光生载流子的有效空间分离,显著增强光催化降解和原位生成H2O2的性能,为新型异质结的构建提供了新的见解和思路。3.利用PDI-Urea有机超分子的高度结晶性以及静电纺丝工艺制备的纳米网状纤维膜结构,能够在内生IEF驱动光生电荷分离的同时,为电子和空穴的快速转移提供通路。此外,借助泡沫镍电极的磁阻效应及其产生的洛伦兹作用力,使得PDI基薄膜材料中载流子的分离和传输加快,进而确保IEF的持续作用。研究证明,在可见光、外加偏压和非接触磁场共同作用下,催化产氢和同步降解MO染料的性能得到显著提升,同时实现了光催化剂在可回收性和稳定性方面的提高,为光催化技术在实际应用中提供了新的可能性。
其他文献
本文以高压加热器常用的TP439不锈钢作为研究对象,研究了TP439不锈钢在不同高温水蒸气条件下的氧化行为以及高温水蒸气与应力耦合作用下的氧化和失效行为。通过改变氧化温度、应力加载方式、速率和大小等因素探明水蒸气与应力作用下的氧化动力学规律。通过场发射电子扫描显微镜观察试样在高温水蒸气中氧化后的显微结构。利用能谱仪及X射线衍射仪分析膜层的表面成分及相结构。采用SEM、3D显微镜、XPS及EDS分析
学位
FCC结构高熵合金由于强度低和耐磨性差在结构材料上的应用受到限制,利用金属间化合物强化设计的多相HEAs可获得优异的综合性能,但含金属间化合物的多相HEAs设计的复杂性和多样性使其具有巨大的挑战。本文在CoCuFeMnNi体系高熵合金上添加不同的元素(Nb、V和Cr)促进金属间化合物的形成,通过电弧熔炼制备了 CoCuFeMnNbxNi 和 CoCrxCuFeMnNiV 高熵合金(x=0,0.25
学位
社会生产中金属基材料的应用环境越来越严苛,近年来耐蚀耐磨的铁基非晶合金受到广泛关注,但受限于其较差的成形能力,只能通过表面涂层的方式进行应用。随着复合材料的发展,添加增强相制备铁基非晶基复合涂层,成为突破铁基非晶合金应用限制的可行方法,对复合涂层的结合机理及性能的研究也成为了急需解决的问题。本课题选择具有代表性的Fe Cr Co Mo CBY铁基非晶体系和典型的WC增强相制备铁基非晶复合涂层,从非
学位
近年来,随着结构材料日益趋于轻量化,各应用领域对轻质合金的需求愈加强烈。但是,受限于传统合金的设计理念,目前的轻质合金都存在一些不足,如铝合金断裂韧性差;钛合金变形抗力和耐磨性差,不易切削,价格昂贵;镁合金对应力集中很敏感,而且在潮湿大气中的耐蚀性较差,这些问题都限制着目前轻质合金的发展与应用。高熵合金(HEA)凭借其优越的力学性能以及功能特性,成为当今材料领域的一大研究热点。然而,大多数高熵合金
学位
随着科技的不断发展,产生了大量的余热,例如:家庭供暖、汽车尾气和工业过程,而热电材料在废热回收和太阳能热利用方面的应用很有前景。热电材料可以分为无机热电材料和有机热电材料,有机热电材料由于成本低、重量轻、机械柔性和大面积低温溶液可加工性等优点逐渐受到了科研人员的重点关注。本文在引达省并二噻吩的基础上设计合成了三种带有离子型侧链官能团的P型有机小分子热电材料。首先选择三氯化铁(FeCl3)溶液作为掺
学位
镁锂合金作为世界上最轻的金属结构材料,凭借其巨大的轻量化优势、比强度高、疲劳强度高等优点,被广泛应用于航空、航天、交通等众多领域。本文提出将超塑性气胀成形工艺应用于镁锂合金加工中,首先通过热拉伸实验探索LZ91合金板材的热变形行为和超塑性变形机理;在此基础上,通过超塑性气胀成形工艺来成形0.5 mm厚LZ91合金自由胀形件和1.0 mm厚LA81合金筒形件,探究胀形件的成形性能和胀形机制,并对模具
学位
三维编织Cf/Al复合材料以其较高的比刚度、比强度,较低的密度在航空领域具有广阔的应用前景,三维编织技术使编织预制体具有良好的可设计性,为航空飞行器复杂零部件的整体成型创造了条件。航空发动机中经常会遇到由于装配需求或冲击磨损造成的缺口部件,以及结构复杂、形状奇特的异型件,为保证三维编织Cf/Al复合材料在航空发动机上安全使用,研究三维编织Cf/Al复合材料缺口部件的疲劳性能和异型件的力学性能是很有
学位
随着增材制造技术的快速发展,近来选区激光熔化(Selective Laser Melting,SLM)Ti-6Al-4V合金引起了大量的关注,已经在航空航天和生物工程等领域广泛应用。但SLM成形过程特有的快热快冷的特性,容易导致成型零件产生极大的温度梯度,引起热应力,从而影响成型零件质量。因此,探究Ti-6Al-4V合金SLM成形过程,探讨熔池特性与成形晶粒之间的关系,对Ti-6Al-4V合金粉末
学位
环境污染和能源短缺问题严重制约人类社会经济的发展。半导体光催化的高级氧化还原技术是解决这两大难题的一种途径。光催化技术可以降解污染物、产H2、产H2O2、还原CO2等。同时光催化技术具有原料来源丰富、无毒无害等优点,引起了研究人员的研究兴趣。为了提高光催化活性,研究人员提出了各种改进策略,构筑异质结是其中之一。最近几年研究人员提出的具有交错能带结构的梯型(S型)异质结不仅能够有效分离光生载流子,还
学位
连续SiC纤维增强钛基(SiCf/Ti)复合材料在高温环境下具有很高的比刚度、比强度以及良好的抗疲劳和抗蠕变性能,是适用于800℃以下使用的轻质高温材料,因此在航空航天领域得到了广泛的应用。基体涂覆纤维法是一种制备SiCf/Ti复合材料预制体的重要方法,首先是通过物理气相沉积法在SiC纤维表面沉积一层钛合金制备出先驱丝,然后将先驱丝堆垛排布或缠绕制备出SiCf/Ti复合材料预制体,最后通过热等静压
学位