Bi系超导体的本征电子隧道谱研究

来源 :中国科学院研究生院 中国科学院大学 | 被引量 : 0次 | 上传用户:god_save_me
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铜氧化物材料中的超导机制一直是人们关心的重要问题,这类材料的一个普遍特性是在超导转变温度Tc以上很宽的温度范围内有赝能隙及费米弧的存在,而对这些现象的正确理解是寻找超导配对机理的重要方面。本论文通过Bi系氧化物超导体的本征隧道谱对相关问题开展了深入的研究,获得了如下结果:   1.采用先进的微加工技术制备了不同掺杂浓度的Bi2Sr2CaCu2O8+δ(Bi2212)及Bi2Sr2CuO6+δ(Bi2201)亚微米本征隧道结。我们成功避免了在制各过程中对表层CuO2面超导电性的破坏,使得制备工艺更加稳定。亚微米本征隧道结具有两大优势:探测的是样品内部的性质,从而避免表面所带来的不确定因素;极大地减少了热效应对隧道谱的影响,从而为铜氧化物的物理性质研究打下了基础。   2.通过对不同掺杂的Bi2212本征隧道谱的研究,发现在T*温度赝能隙出现后,随着温度的降低超导能隙会在某个温度Tc0开始打开,其中Tc0明显高于超导转变温度Tc,而超导能隙随温度的变化与d波BCS能隙规律完全符合。这些结果也得到了零压电导随温度的变化规律的证实。分析表明,在动量空间赝能隙主导反节点区域,而超导能隙主导节点区域。随着温度下降到Tc0,超导配对首先出现在节点附近的费米弧上,到了Tc以下,超导配对由节点区逐渐扩展到反节点区,最后在远远低于Tc时形成全费米面的d波超导能隙。计算得到了超导相由于准粒子和库柏对的有限寿命所导致的费米弧,其中弧长对温度显示了常见的线性依赖关系。   3.通过对最佳掺杂的Bi2201本征隧道谱的研究发现,尽管隧道谱的形状与Bi2212材料有很大的差别,其物理规律却十分相似,即同样存在T*、Tc0和Tc三个特征温度点。一个与Bi2212不同的地方是超导态存在于完全的费米面。   Bi系氧化物超导体中T*、Tc0和Tc三个特征温度的存在表明材料的超导态从赝隙态中发展产生,并在Tc到Tc0范围存在超导预配对现象。超导态和赝隙态相互联系但很可能起源于不同的物理机制。
其他文献
双链断裂是一种紫外照射或辐射因素导致的DNA的严重损伤,需要通过同源修复机制进行修复。RecA是原核生物中参与同源修复过程的一类重要蛋白,但RecA缠绕单链形成的核蛋白丝究
以当今国际热点铁磁Hesuler合金为研究背景,本论文选择具有两相竞争、物理化学性质丰富的Ni-Fe-Ga体系合金为研究对象,并在此基础上尝试了Cr-Co-Ga体系新材料的探索。运用提
sRNA介导的基因沉默机制是近年来基因调控领域的一个热门课题。传统的反义sRNA一般通过与mRNA配对结合并共同降解来实现目标基因的沉默。在共降解模型下,sRNA介导的基因沉默具
学位
In2O3基稀磁半导体是继ZnO基和GaN基稀磁半导体之后研究的新的热点。In2O3可见光透光率极高(达到了85%),导电薄膜电阻率低等优良特性促使其成为光电子材料领域的杰出选择。现代工
相对于传统壳体声纳,拖线阵声纳由于其特有的优势日渐成为声纳工程中受关注的焦点,是现代舰艇重要的水声探测装备之一。目前拖线阵的发展趋势为低频、大孔径、长拖距,在工作
我结婚以后生活的第一个重大事件,是跟配偶一起养了一只猫。这只猫是个白肚皮的黑狸花猫,是我在同城资源分享网站上找到的。第一次见面是在多伦多郊外很远的一所房子里。它有另外四个兄弟姐妹,我们进门,小猫四下奔逃,只有它没有跑开,反而纵身一跃,挂在了我的大衣上,好像想说:“带我走!”我们带它离开了那间已经有了太多猫和狗的房子,给它起名叫中微子,因为它是那么小。  来到我们家以后,它很快熟悉了地方,习惯了两个
期刊
四氧化三铁(Fe_3O_4)作为锂离子电池负极材料,由于其导电性差,循环过程中体积膨胀产生的应力导致活性材料破裂粉化,以至其与集电极脱离,严重影响了四氧化三铁负极材料的电化学性能的稳定性。因此,为了解决存在的问题,本论文成功构造了不同的四氧化三铁与碳材料的复合纳米结构,利用碳材料优异的导电性与电化学性能稳定性来提高四氧化三铁的电化学性能稳定性,主要体现在两个方面。首先,将四氧化三铁纳米小球表面进行
近年来,随着低维薄膜材料的发展与制备,并且由于其优异的物理性质,例如:石墨烯超高的电子迁移率,过渡金属硫化物、硼稀和黑磷等具有天然带隙的半导体,使之成为了人们研究的重点内容。伴随人类对新能源、环保材料、热电器件的需求日益增多,因此通过理论计算来探究如何提高这些薄膜材料的热电性质,为这些新型低维材料的热电性质在日常生活、工业应用、电子器件的应用提供良好的指导就显的非常有必要。由于对热能转换的需求,人
三元铌镁铟酸铅-钛酸铅(PIN-PMN-PT)单晶具有十分优异的机电、压电、铁电性能,尤其是在制造新一代高性能微驱动器和超声换能器中体现出了更加优异的性质,近年来得到了弛豫铁电体学界广泛的研究。准同型相界(MPB:morphotropic phase boundary)附近的掺铒PIN-PMN-PT晶体继承了PIMNT系列晶体组分均匀、宏观物理性能突出的优点,在光学和压电器件领域体现出了优异的综合