低气压容性射频放电等离子体动力学数值研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:ufs2269acjx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
除了传统的焊接、切割、化工等应用外,低温等离子体技术在半导体加工、材料表面改性、生物医学等新技术领域也发挥着重要作用。近年来,低温等离子体物理研究推动着等离子体处理加工技术迅猛发展,同时技术应用又促进着低温等离子体物理研究的深入开展。在低温等离子体应用的基础实验和理论研究中,产品质量的稳定性、反应机理的清晰性、产率和效率的提高是新技术领域中的一系列关键问题。因此对其基本物理过程进行透彻的研究和工艺参数的优化改善尤为迫切。部分电离气体的产生过程、性质特征和运动状态等都是低温等离子体物理的主要研究内容。气体放电装置的几何尺寸、中性气体压强和峰值电压等放电参数对放电等离子体特性的影响是非常重要的物理问题,但内部机理仍不清晰。通过数值模拟对放电过程和物理特性进行系统深入的研究是一种简便、高效的方法。本文针对低气压容性射频氩气放电建立了等离子体的一维流体模型,数值研究了基态激发对等离子体动力学特性的影响。研究了不同放电间距、中性气体压强和峰值电压对电离的影响,以及中性气体压强对等离子体参数演化特性的影响。在等离子体流体模型建立中,探讨了基态激发在电子能量方程中的重要性。在两种情况(考虑和不考虑基态激发)下,对所建立的模型进行了数值求解。数值结果表明,两种情况下放电达到稳定状态所需要的时间不同。此外,不考虑基态激发与考虑基态激发的情况相比,等离子体区的电离率被高估了,而且周期平均的电子密度、离子密度、电场和电子温度等物理量也存在明显的差异。因此基态激发在流体模型中是不可忽略的。然后深入地分析了不同放电间距、中性气体压强和峰值电压对等离子体动力学特性的影响,特别是对电离的影响。数值研究了中性气体压强对等离子体参数演化特性的影响。结果发现,随着中性气体压强的增加,放电达到稳态后在随时间的演化过程中,放电区间中心点处的电子密度、电子电流密度和总电流密度的振荡幅度减小,离子密度基本没有振荡,离子电流密度的振荡幅度增加;驱动鞘层和接地鞘层内的电子温度、基态电离碰撞频率和基态激发碰撞频率的振荡幅度增大;驱动电极处和接地电极处的电场和净电荷密度的振荡幅度增大。
其他文献
在过去几十年里,随着工业和农业的快速发展,土壤、水体和大气颗粒物中的重金属污染日趋严重,并在全球范围内引起关注。由于重金属具有长期毒性、难以降解、以及沿着食物链积累等特性,最终会对人类健康造成严重伤害并且破坏生态平衡。因此,如何对土壤、水体和大气颗粒物中的痕量重金属进行快速、原位检测成为当前科研工作者关注的热点。本文在大气压下,利用雾化放电作为等离子体源,通过发射光谱法检测水体中的痕量重金属铜。开
学位
激光诱导击穿光谱(Laser induced-breakdown spectroscopy,LIBS)技术是一种光谱分析手段,可应用于众多领域。作为一种成分分析技术,其定性分析方案已比较成熟,但定量分析方案仍需要探索,尤其是定标曲线需要进一步完善。LIBS的定量标定方法包括标准样品法、内标法以及无定标法(Calibration-Free LIBS,简称CF-LIBS)。前两种方案都必须基于制备标准
学位
聚变装置边界等离子体中的杂质输运问题是未来聚变装置中要面临的重要问题,其对维持聚变装置的高效运行和提高等离子体放电性能都有重要的意义。首先,边界的杂质会渗透进入等离子体芯部,稀释背景等离子体密度,进而降低放电效率。其次,杂质辐射造成的能量损失,会使得芯部等离子体约束能力降低,严重时甚至会导致装置放电终止。但同时,杂质辐射又可以降低聚变装置偏滤器靶板的热负荷,缓解靶板的热损伤,从而延长偏滤器的使用寿
学位
等离子体对电磁波的吸收、反射、折射是一个很重要的物理问题,这个问题在通讯、医疗诊断和电磁对抗等领域已得到广泛研究。本文给出解析的、梯度参数可调的密度分布函数用以描述不同类似铃铛位型的电子密度剖面。基于给出的电子密度剖面,利用WKB(Wentzel-Kramers-Brillouin)方法,研究了不同电子密度梯度下非均匀等离子体层的厚度、等离子体碰撞频率、电子密度等参数对0.20-30 GHz频段电
学位
托卡马克是到目前为止最有可能实现可控核聚变的装置,偏滤器为托卡马克中为实现排除聚变反应产生的杂质粒子和热负荷而引入的主要部件。钨具有熔点高、溅射产率低、氚滞留率低等优点成为面向等离子体壁材料的主要候选。作为面向等离子体材料,钨材料将承受强氢同位素粒子流辐照,诱导微观结构(缺陷和气泡结构)形成,从而加剧氢同位素燃料在钨中滞留。氢的同位素氚具有放射性并且价格非常昂贵,考虑到核聚变的经济性和安全性,需要
学位
二氧化碳是一种温室气体,也是可再生碳源,将其转化利用对绿色与可持续发展具有重要意义。利用可再生能源驱动的等离子体二氧化碳转化,是将二氧化碳循环利用和可再生能源储存相结合的一条具有广阔前景的技术路线。另外,等离子体方法可将二氧化碳转化和固氮反应二者结合,实现二氧化碳和氮气的共转化,是等离子体转化CO2的新途径。介质阻挡放电(DBD)和滑动弧放电等离子体,是两种典型的非热等离子体。因此本论文采用这两种
学位
HL-2M(中国环流器二号M装置)是新建造的托卡马克,用于研究未来聚变堆相关物理和其关键技术,为下一步建造聚变堆打好基础。HL-2M着重开展燃烧等离子体物理的研究课题,包括等离子体输运、高能粒子物理、新型偏滤器位型、等离子体加料以及等离子体与第一壁相互作用等。偏滤器靶板过载热负荷是托卡马克磁约束聚变装置面临的一个重要问题,这将导致强烈的等离子体与壁相互作用,甚至对靶板材料造成不可承受的侵蚀等。要解
学位
自2019年12月初至今为止,被世界卫生组织命名的新型冠状病毒(SARS-Co V-2)由于其具有极强的传播能力,越来越多的人或环境或物品等携带细菌或病毒,导致了数以万计的人的生命安全受到威胁,严重扰乱了人类的正常生活方式。目前研究的关键是要提出一种能够快速灭菌的方法。针对此类微生物消杀问题,本文以大肠杆菌(Escherichia coli,E.coli)作为生物指示剂,采用沿面介质阻挡放电装置(
学位
在磁约束核聚变装置运行过程中,等离子体与壁材料相互作用(Plasma-Wall Interaction,PWI)会引起燃料(氢同位素)在第一壁及偏滤器表面滞留,直接影响材料的性质和燃料粒子的再循环。氚的长期滞留还会引发核安全问题,需要引起特别的重视。激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy,LIBS)是一种重要的激光烧蚀光谱元素分析技术,原位LIB
学位
作为新型的高级氧化技术,等离子体中挥发性有机污染物(Volatile organic compounds)气相氧化已被广泛研究。但目前该领域的研究主要是开展反应工艺优化,考察实验条件对特定反应物脱除率和能耗指标的影响,对等离子体中VOCs气相氧化机理尚不清楚。鉴于此,本文采用介质阻挡放电(Dielectric barrier discharge)空气等离子体,以简单的C1分子中一氧化碳(CO)、二
学位