含氟POSS合成及其对聚酰亚胺材料介电性能的改性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:yinyulong001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以现代物理学为理论基础发展起来的微电子技术和5G通信需求带动了微电子工业的迅猛发展,随之而来的是以集成电路为首的电子器件的不断更新换代。目前的主流趋势是电子元件的微型化和集成电路的超大规模化,但也出现了诸如信号延迟、信号损耗、信号串扰等诸多问题。解决上述问题的关键在于优化相应功能材料的介电常数,因此急需寻找满足上述要求的特种材料。聚酰亚胺因其具有优异的综合性能在微电子工业中用途广泛,但其介电常数有待进一步降低进而满足5G通讯及特殊领域的应用。POSS是一类具有三维结构可设计性的有机无机杂化单元,本文采用溶胶凝胶法,以四丁基氟化铵为催化剂,选择低聚苯基POSS和含氟偶联剂为原料,以质量比为6:1合成了含氟POSS。合成出的含氟POSS是纯度较高的笼形分子,T8、T10为主要分子构型。采用溶液缩聚法,选择均苯四甲酸二酐和两种二胺单体为反应原料,引入含氟POSS作为复合改性剂,分别制备了含氟POSS/PI和含氟POSS/FPI(含氟聚酰亚胺)复合材料。结合Materials Studio 2019分子模拟软件,采用分子动力学模拟的方法,对PI和FPI复合材料的玻璃化转变温度、自由体积以及分子极化率进行了模拟。模拟结果表明,POSS使得PI和FPI的玻璃化转变温度明显提升,15%-PI和15%-FPI的Tg值分别达到609 K和613 K。引入-CF3和POSS分子也使得两种材料的分子极化率显著下降,15%-PI和15%-FPI的分子极化率分别为0.54 D/?~3和0.99 D/?~3。PI和FPI分子极化率的下降和自由体积分数的上升也说明了-CF3的低极化率和POSS的笼形结构是获得低介电常数聚酰亚胺的关键。对实验合成的PI和FPI复合材料利用宽频介电频谱分析仪进行了介电性能测试,同时各项性能表征表明,含氟POSS使得PI具有低介电常数(1MHz2.72)并兼具较高的疏水性能(接触角最高为88.82°)。-CF3和POSS的共同作用不仅使FPI具有高光学透明度和好疏水防潮性(接触角最高为100.24°,吸湿率最低为0.96%),其介电常数更是达到1 MHz 2.67的最低值。
其他文献
超声神经调控是一种无创的、靶向性好的深部脑刺激技术,在治疗阿尔兹海默症、癫痫等神经退行性疾病上颇具应用潜力。然而,由于颅骨的反射和散射作用会使得超声作用点偏移,超声神经调控的安全性和有效性无法得到保障。磁共振声辐射力成像(MR-ARFI)能为超声神经调控提供精准定位和引导。然而,MRARFI存在着成像时间长的缺陷,如何在不影响定位精度的条件下,加快MRARFI成像速度成为超声神经调控领域的迫切需求
学位
质子交换膜燃料电池(PEMFC)与锌-空气电池(ZAB)是新型的高能、环保储能与转换器件,但其阴极氧还原反应(ORR)过程过电位高、机理复杂,Pt族金属(PGM)催化剂成本高昂,合成低成本、高活性的非贵金属ORR催化剂是这两类电池商业化应用的关键步骤。针对非贵金属催化剂本征活性不足的问题,本论文基于沸石咪唑酯骨架(ZIF-8)材料制备了高活性的锰基双金属氧还原催化剂,并对Mn元素对催化剂活性提升的
学位
基于合金化/去合金化反应机制的硅负极材料以理论容量高、电极电位低、储量丰富、成本低廉的优势受到国内外科研人员的广泛关注,成为高比能量锂离子电池(Lithium-ion Batteries,LIBs)负极的理想选择。然而,其在LIBs中的实际应用仍面临低首次库伦效率(Initial Coulombic Efficiency,ICE)和快速容量衰减的瓶颈问题。针对上述两个问题,本文采用Li F添加剂改
学位
随着全世界电动汽车市场的迅速增长,锂离子电池产能也大幅扩张,正极材料对钴的依赖以及资源稀缺带来的钴价上涨导致锂离子电池成本上涨,这刺激了无钴正极材料的研究和发展。其中无钴高镍层状正极材料因其较高容量、低成本以及最接近商业化应用的特性受到企业界和科研界的广泛关注;本论文基于热处理温度对无钴高镍正极材料颗粒粒径形貌、晶体结构以及电化学性能的影响机制的深入研究,制备出具有最佳电化学性能的未改性材料;通过
学位
脑卒中被认定为全球第二大死因,也是成年人长期残疾的主要原因。全世界范围内每年约有1500万人患中风疾病。足下垂是中风后常见的病症之一,为治疗患者因足下垂导致的偏瘫现象,临床上利用Fugl-Meyer运动评分量表与Barthel指数用以分析患者运动的能力以及评定患者处于发病时期,在发病前期即时进行康复训练可最大化接近正常人步态。目前常见的治疗手段包括按摩训练,电刺激训练等,近几年外骨骼机器人的引入对
学位
氧还原和析氧反应(Oxygen Reduction Reaction,ORR和Oxygen Evolution Reaction,OER)是以燃料电池和金属空气电池为代表的新一代能源转换技术当中的两个重要反应,这两个反应的高效催化剂大部分为以Ru、Pt、Ir等贵金属为代表,但其高成本低储量的缺点尚不能完全满足上述两种技术大规模应用的需求。因此,合理设计并开发低成本且高活性、高稳定的非贵金属催化剂是
学位
X射线聚焦镜厚度薄,面型精度高,要求电铸的镜片内应力尽可能小,以及为了防止受外力冲击而变形,镜片材料要具有足够高的强度。力学性能优异的镍基电铸层成为首选的镜片材料,内应力低的氨基磺酸盐镀液被作为电铸体系。为了提升电铸镜片的强度,本文研究低应力Ni和Ni/Al2O3电铸工艺,探究工艺条件对镀层力学性能的影响规律,对实际电铸过程进行模拟仿真,为调控电铸层力学性能和聚焦镜生产提供参考。采用氨基磺酸盐体系
学位
氢能的出现为2060年碳中和的实现提供了前提条件,氢的廉价制备是制约氢能发展最主要的技术瓶颈。电解水制氢是目前比较简单方便的制氢方法,但制氢过程需要高效的催化剂。MoS2是目前研究较多的电催化剂之一。与铂电催化剂相比,MoS2丰度较高,价廉易得,是一种较为理想的电催化剂。目前,研究者发现了很多方法可以用来提高MoS2的催化析氢性能,其中利用磁性元素掺杂MoS2可以显著提高其析氢性能,且方法简便,原
学位
随着移动互联网时代的高速发展,多媒体内容在互联网中的数量呈现爆炸性地增长。图像作为人类交流最常使用的信息媒介之一,能够直观地表达丰富的视觉信息。图像描述旨在通过学习的手段让计算机能够像人类一样通过理解图像中的内容,利用自然语言生成技术产生对应的文字描述。图像描述跨越了图像与文本的语义鸿沟,因此在信息检索、人机交互等领域具有重要的意义。如今,图像描述任务大多采用深度生成模型技术以灵活地产生与图像语义
学位
微纳米马达在生物医学、环境监测及微纳米机器人等领域有巨大应用前景,受到国内外研究人员的广泛关注。微纳米马达指在分散介质中能够将周围环境中存储的化学能或其他形式能力转化为自推进运动的微纳米粒子。近十年来,该领域不断取得新突破,已开发出许多拥有先进运动控制和新功能的微纳米马达。然而,大多马达在进行驱动时,使用了有害于生物体的燃料或构筑材料。这使得微纳米马达在生物医疗领域的应用受到了极大的限制。镁基微马
学位