光电化学池还原CO2催化体系的设计与机理研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:yao252373
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着世界经济的不断发展,人口的不断壮大,不可再生的化石能源正在被消耗殆尽,并且随之排放的二氧化碳(CO2)等温室气体造成了全球范围内的环境恶化。太阳能作为地球上最重要的能量来源,具有广泛、体量大、清洁无污染等众多优势,成为了化石能源最具潜力的替代者。利用太阳能将CO2还原制备甲烷(CH4)、甲醇(CH3OH)等碳氢燃料在缓解能源危机和全球变暖方面拥有最为广阔的应用前景。然而,较低的转化效率,水相中产H2副反应的竞争,以及CO2还原反应产物的多样性等,使得该领域的研究仍然面临着巨大挑战。因此,研究开发高活性、高稳定性且廉价易得的催化剂,能够利用太阳光能在水相中高效、高选择性的将CO2还原成燃料,成为了当今绿色能源领域的研究重点。半导体材料催化太阳光能转化为化学能,其过程主要包括光生载流子的激发生成、分离传导以及表面反应,因此对于光生载流子的有效利用是决定半导体光催化剂整体效率的核心因素。对于光催化CO2还原反应,载流子的表面反应过程对含碳产物的生成起到决定性作用,在水溶液中进行的CO2还原反应面临着产H2副反应的强烈竞争,并且还原产物多种多样,选择性低。本论文便通过对载流子表面反应机理的研究和路径的引导,抑制了水溶液中产H2副反应的发生,并促进了甲醇液相产物的选择性生成。同时,本论文还对载流子的分离传导过程进行了研究和优化,提高了光电阳极材料的光生载流子利用效率。本论文主要研究的对象为氧化亚铜(Cu2O)与钒酸铋(BiVO4)半导体催化剂。首先,前者表面特殊的活性位点有助于抑制产H2副反应,通过Ti O2光阳极-Cu2O暗阴极的构建,维持了反应过程中Cu2O薄膜电极的稳定,促进了含碳产物的选择性生成;其次,通过对Cu2O表面不同大小Cu颗粒的负载,引导了表面电子的还原反应路径,促进了CH3OH的选择性生成,并且分别从热力学和动力学角度证明了Cu/Cu2O界面是CH3OH生成的主要活性位点;最后,水氧化半反应对电子的形成以及CO2还原半反应起着至关重要的作用,相比于上述构建的Ti O2纳米棒光电阳极体系,Bi VO4光阳极更加具有可见光吸收性能以及较高的理论光能转化效率,通过对其表面四氧化三钴(Co3O4)纳米颗粒的负载,同时提升了Bi VO4体相和表面载流子分离效率,提高了水氧化光能转化效率。
其他文献
花生是主要的油料作物之一,也是消费者宝贵的蛋白质来源,但却会在过敏个体中引起过敏反应,甚至引起死亡。目前,过敏反应尚缺乏准确的治疗方案,避免食用致敏食品是保障过敏患者食品安全的主要途径。因此,加强对食品中花生致敏蛋白的监测对于食品致敏性风险评估与监管尤为重要。该文分别从蛋白质和DNA水平对花生致敏蛋白检测方法进行综述,并对其发展趋势进行展望,以期为花生致敏蛋白检测方法的进一步研究与应用提供参考。
期刊
<正>阅读案例时,一个词语从脑海里蹦出——“情绪力量”,这是美国著名心理学家维吉尼亚·萨提亚提出的一个心理学名词,是指管理自己情绪的能力、能量。案例中老师的担忧其实就是担心牛牛是否有足够的心理能量承受小朋友的提问,担心他会受伤。由此,我想到小白的提问恰恰是一个非常好的发展小朋友情绪力量的契机,我们不妨尝试从以下几个方面来做。
期刊
空心微腔回音壁谐振模光纤传感器具有体积小、测量灵敏度高、探测极限小等优点,兼具有体传感和表面传感能力,并且空心微腔本身将传感器和微流体的传输通道合二为一,已经在多个领域,尤其是光微流体领域展现出了独特的应用优势,是当前的高灵敏度传感技术发展前沿之一。本文综合解析及仿真分析的方法明确空心微腔回音壁谐振模光纤传感器中的关键结构参数对传感性能的作用机理;提出空心微腔谐振模传感器流变成型机理,研究微管腔和
学位
课题主要研究石墨烯太赫兹超材料吸收的调制特性及其掺氮物的太赫兹时域谱。根据石墨烯的导电理论,其导电性能是费米能级和载流子态密度的函数,通过化学修饰、电控制或光泵浦,可以改变石墨烯的本征费米能级和载流子浓度,它的电导率随之而改变。石墨烯带间吸收对应太赫兹波段,因而可以激发太赫兹等离激元。动态改变石墨烯电导率,可以改变太赫兹波的传输特性,太赫兹波的吸收和传导将得到调制;课题实验研究了化学制备掺氮石墨烯
学位
牛奶中掺杂物含量及安全性关系到人类健康,其危害性受到全世界高度关注,因此实施精准、快速检测具有重要现实意义。伏安型电子舌因测试速度快、灵敏度高等优点,被广泛应用于食品检测领域。但伏安型电子舌进行测试还存在以下关键问题:不同样品测试信号的漂移;代表样品信号的原始数据量偏大;预测结果存在不确定性等。本文选择不同掺杂浓度下掺杂牛奶的响应信号数据集作为分析对象,构建与复杂乳制品体系掺杂物含量相适应的判定模
学位
电感耦合等离子体质谱(ICP-MS)广泛应用于材料、环境、地质、食品、制药、医学检测、半导体等领域。基于计算机辅助的ICP-MS工作机理研究和性能优化是近年来重要的研究方向。另外,ICP-MS用于单颗粒特征参数分析,相较于电镜和光谱测量方法,呈现出一定优势,但作为一种新应用,仍存在测量准确度差、粒径分辨低等问题。论文工作围绕ICP-MS多个物理模型的解析研究、单颗粒ICP-MS分析方法的建立与优化
学位
精确的锂电池SOC状态值与电动车辆的安全行驶、动力效率、充电管理和续航里程等密切相关。然而,锂电池是一个非线性时变系统,在电动汽车上应用时,还会受到复杂工况、环境温度、电池老化状态、传感器测量噪声的影响,因此,SOC状态的精确估计非常困难。本文对电动汽车用锰酸锂电池和磷酸铁锂电池展开了模型辨识和单体状态的非线性估计研究,主要研究工作及成果如下:1)对锂电池基本特性展开研究。搭建了锂电池测试系统,对
学位
流量测量是计量领域的三大检测参数之一,对保证产品质量、提高生产效率、促进科技发展具有极其重要的作用。液体流量测量作为流量测量的一个重要分支,在石油化工等生产领域、科学研究等学术领域、衣食住行等生活领域发挥着重大作用。相较于其他液体流量测量技术,超声波液体流量测量技术凭借不与被测液体接触、测量精度高、适用性强等优点被广泛应用。国外对超声波液体流量测量的研究开展早、成果多,产品适用场景广。我国相关研究
学位
电子散斑干涉(Electronic Speckle Pattern Interferometry,ESPI)技术是一种现代光学无损测量技术,具有准确度高、全场非接触等特点。在ESPI技术中,待测物理量与ESPI包裹相位图或ESPI条纹图的相位分布信息直接相关,因此研究先进的电子散斑干涉相位提取方法,对ESPI的发展和应用有着重要的理论价值和工程实际意义。目前从工程及应用科学方面提出的动态测试问题越
学位
以香叶基香叶基焦磷酸(geranylgeranyl pyrophosphate,GGPP)为前体,可以合成多种二萜化合物骨架及其衍生物,如紫杉醇和丹参酮;也可合成类胡萝卜素化合物如β-胡萝卜素、虾青素、藏红花酸等,它们在医药化学品、食品色素和医药化学品等方面具有重大的应用潜力。利用微生物细胞工厂从普通廉价碳源出发合成这些高附加值的二萜类化合物是对目前以植物提取为主的传统生产方式的重要补充,并且具有
学位