论文部分内容阅读
关于一类带电磁位热的Schr?dinger方程的解的存在性的研究
【机 构】
:
华中师范大学
【出 处】
:
华中师范大学
【发表日期】
:
2014年期
其他文献
本课题的主要思想来源于刘文、杨卫国、严加安等的相关随机变量序列收敛性的结论,给出了一类随机变量强极限定理,推广了已知的结论. 刘文、严加安、杨卫国研究了随机适应序
基于偏微分方程的图像复原技术由于偏微分方程的特性及优越性在图像复原方面得到广泛的应用,这一研究课题具有重要的理论价值和实际意义.Rudin、Osher和Fatemi提出的ROF模型
谱方法是求解微分方程的一种重要数值方法,已被广泛应用于科学和工程问题的数值模拟中,其主要优点是计算的高精度。另一方面,Volterra型积分方程、时滞积分方程以及泛函积分微分
本文应用平均方法得到了如下奇异摄动随机振动方程的有效逼近:εuεtt(t)+uεt(t)=f(uε(t))+εα(W)(t),uε(0)=u0∈Rn,uεt(0)=u1∈Rn.其中0<ε≤1,0≤α≤1/2,f(uε(t))=[βuε
随着云计算的发展,企业或个人把越来越多的数字产品放在“云”中。为了保护云内视频的安全及版权。本文基于现有的研究基础,提出了一个面向云计算的视频分形水印算法。本文算法
2009年,Censor和Segal在对分裂可行性问题进行研究时,将分裂可行性问题与不动点理论大胆结合,首次提出了分裂公共不动点问题(简记为SCFPP).设H1,H2为两个实Hilbert空间,U:H1→H1和T
由于时滞神经网络已被广泛应用于模式识别、图像处理、自动控制、人工智能、联想记忆等领域.又由于时滞神经网络的平衡点的稳定性在这些应用中起了重要作用.因此,研究时滞神经
不动点理论作为泛函分析的重要组成部分,一直以来在很多领域都有着广泛的应用,例如:随机算子理论和随机逼近理论、控制论、优化问题、金融数学、数学规划、微积分方程的解的存
本文讨论了在企业合作之间的非线性双寡头博弈模型,对现有的模型进行了改进,介绍并研究了两个动态调整策略,一个是在重复博弈中实现两企业之间合作的动态调整策略,以及另一个针锋
染色作为图论研究的一个重要分支,包含了非常丰富的内容,如点染色、边染色、面染色、点边全染色、点边面全染色等等.本文研究的是点染色中的一种特殊形式—均匀染色.我们称图G