新型活性核/活性壳上转换纳米颗粒的制备、表面修饰及其应用

来源 :苏州大学 | 被引量 : 0次 | 上传用户:w1141
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
上转换纳米材料是一种可以连续吸收两个或者多个光子,将低能激发光转换为高能发射光的新型发光材料,与传统的量子点和荧光染料相比,上转换纳米材料具有发射峰窄、无自体荧光、组织穿透性强、毒性低、对生物体损伤小等优异性能,使其在细胞成像、诊疗以及分子检测等生物领域有着广泛的应用。尽管上转换纳米材料具有诸多优异性能,但是控制合成高分散性、尺寸均匀且上转换发光效率高的上转换纳米颗粒仍然是当下研究的热点和难点。此外,油相中合成的上转换纳米颗粒表面通常被疏水性的OA或OM等配体所包裹,导致其不能直接在水溶液中分散,尽管配体交换、配体氧化、配体去除等多种表面修饰策略被提出,但是以上方法制备的水溶性纳米颗粒易团聚、发光强度低且通常不具备生物相容性,这都极大的限制了上转换纳米颗粒在生物领域的应用,所以设计高效、高质量的表面功能化修饰方法仍然是一个严峻的挑战。为了解决以上问题,本论文主要从以下三个方面进行研究:(1)通过调整稀土离子Yb3+掺杂浓度、控制壳层厚度来合成高分散性、粒径均匀以及荧光强度高的棒状上转换纳米颗粒(NaYF4:40%Yb3+/1%Tm3+@NaYF4:10%Yb3+);(2)提供了一种简单、高效的上转换纳米颗粒表面修饰的方法,利用六聚组氨酸(6×His)对合成的新型核壳上转换纳米颗粒进行相转移,获得了高分散性和高稳定性的水溶性的上转换纳米颗粒(6×His-UCNPs),通过调整6×His浓度、溶液pH以及UCNPs-OA浓度三个因素,获得了 6×His-UCNPs荧光强度最大的相转移条件;(3)通过静电吸附作用,以DNA-FAM为能量受体,6×His-UCNPs为能量供体,简单的构建了一个基于荧光共振能量转移(FRET)的上转换纳米探针(UCNP-FAM),实现了对Dam甲基化酶浓度的定量检测。
其他文献
近十年来,可见光催化凭借成本低、绿色、反应温和、官能团兼容性好等优点,在有机合成中得到了快速的发展和广泛的应用。在有机合成化学中,氯原子的引入将会显著改变化合物的物理性质和化学性质,将氯原子基团引入有机分子中尤为重要。目前,天然卤代物有4500多种,而其中含双氯结构的天然产物超过2000多种,这类天然产物常用作手性催化剂、药物中间体、有机合成中间体。双氯化合物的合成方法已经有很多。但是,采用绿色温
学位
可逆-失活自由基聚合(RDRP)是控制聚合物结构和性能的重要聚合手段,其中,对聚合物化学结构强大的设计能力是RDRP最受关注的特点之一。原位溴-碘转换可逆-失活自由基聚合(BIT-RDRP)采用光控聚合技术,使用结构稳定、价格低廉的ATRP引发剂(R-Br)作为引发前体,与碘化钠(NaI)原位生成烷基碘试剂(R-I),进而控制聚合反应,既避免了过渡金属的使用,也克服了烷基碘试剂结构不稳定、成本高、
学位
近年来,由于圆偏振发光(CPL)材料在3D显示、信息存储与处理、信息通讯、CPL激光、生物探针等领域的应用前景而受到越来越广泛的关注。目前研究的CPL活性材料大多为有机功能材料,合成路线复杂及热稳定性较差限制了该类材料的应用范围。硅基杂化材料往往既具有无机材料的热稳定性又具有有机材料的结构可调性。目前关于CPL活性的硅基杂化材料的报道很少。本文基于超分子模板法构筑一系列的具有较高发光效率和不对称因
学位
环丙烯和亚甲基环丙烷类化合物是两类具有高张力的小环化合物,分别具有环内和环外双键,这两类化合物都具有反应活性高、反应类型多样等特点,因此在有机合成中得到广泛的关注。此外,由于这两类化合物反应位点较多,转化模式复杂多样,其参与的反应机理普遍较为复杂。通常过渡金属活化环丙烯的反应类型可以分为三种:1)过渡金属活化环内双键的π键进而得到碳金属化中间体(三元环未开环);2)过渡金属活化环丙烯碳碳单键使其开
学位
近年来,随着经济和科技的发展,生活水平逐渐提高,人们更加偏好健康低脂肪含量的食品。食用低脂和脱脂产品可以避免摄入大量脂肪并降低人们罹患心脏病、冠状动脉性心脏病和各类心脑血管疾病的风险。制备脂肪含量低,均一稳定,基于乳状液的食品成为具有实际意义的课题。本文选取了水相含有蛋白质和多糖作为表面活性剂和乳化剂的水包油乳状液作为研究对象,研究如何制备长时间均一、稳定、不分层的水包油乳状液。从食品工业的角度出
学位
聚集诱导发光(AIE)材料在聚集态时具有良好的发光性能,因此在数据存储与记录、信息防伪和生物成像等方面有着广泛的应用前景。具有圆偏振发光(CPL)性质的手性发光分子材料在3D显示和成像、数据存储和防伪、光传感以及不对称合成等方面有着重要的应用价值。含有序结构的超分子组装体中的氢键、π-π堆积和范德华力等分子间非共价相互作用,在外界刺激作用下会发生改变,从而实现分子材料发光性能的调控,如力致变色(M
学位
光电化学酶生物传感器具有灵敏度高、背景噪音低等特点,在疾病诊断、医学研究等领域具有广泛的应用潜力。其基本检测原理为:在氧气存在下,氧化酶会选择性氧化其底物(待测物),并生成等比例的过氧化氢,通过光电化学法测量过氧化氢的生成量来获得待测物的浓度。不同于光电化学氧化法,用于测量过氧化氢的光电化学还原法可以有效避免待测溶液中多种易氧化物质带来的干扰,但由于氧气在相似的电位下也会被还原,溶液中易于波动的氧
学位
壳聚糖是一种天然的氨基多糖,具有良好的生物相容性、可降解性以及抗菌止血等特点,从而被广泛应用于伤口敷料领域。与传统伤口敷料相比,壳聚糖水凝胶敷料可以允许气体透过,吸收伤口渗出的组织液,防止伤口感染以及加速伤口愈合等优势,逐渐得到了人们的关注。更重要的是,在皮肤受到深度损伤,伤口面积大且不规则时,使用传统伤口敷料容易产生粘连现象,使病人在换药或清创时再次遭受痛苦。如果能够实现敷料的按需溶解,这将缓解
学位
当前整体经济持续健康发展,人们对生活需求的层次也不断提高,生活水平随之愈加提高,而教育作为生活中必要的一部分,人们也对教育投入了更多的资金。当前我国的教育行业存在着一系列问题,例如:资源紧张、资源分配不合理等等。课外教育培训的兴起在一定程度上缓解了当前的教育行业发展问题,也补充了我国整体的国家教育系统,又由于国家为了支持民办教育的发展,制定和贯彻落实了一系列政策,有效促进了课外教育行业的高效发展。
学位
高镍材料(LiNixCoyM1-x-yO2,M=Mn,Al,x≥0.6,y≤0.4)因高比容量、低成本等优势而成为新一代高能量密度锂离子电池正极材料最具竞争力的候选者之一。然而,高镍材料的表面很不稳定,一方面在空气中容易吸收CO2和H2O并形成低离子和电子电导率的Li2CO3;另一方面在电化学过程中容易催化电解液的分解并导致分解产物的持续累积,严重阻碍电极/电解液界面的电荷传输。因此,本文对高镍材
学位