锂离子电池负极材料Fe3O4及SnO2纳米柱阵列的制备及电化学性能研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:lp999999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过渡金属氧化物的理论比容量是商用石墨负极的2~3倍,并具有良好的安全性,因此被认为是极具应用潜力的负极材料之一。在过渡金属氧化物负极材料中,Fe3O4和SnO2都具有较高的理论比容量,分别为926 m Ah/g和1494 m Ah/g。但是它们在Li+嵌入/脱出的过程中会出现较大的体积变化,Fe3O4的体积膨胀为100%,而SnO2的体积变化更加剧烈,可达300%,导致锂离子电池无法实现长循环和快速的充放电,制约了它们的商业化应用。高度有序的Fe3O4和SnO2一维纳米结构,不仅为它们在电化学过程中出现的严重体积变化提供足够的缓冲空间,还兼具大的比表面积、有序的电子传输通道和短的锂离子扩散路径等优点,有望解决Fe3O4和SnO2负极材料的应用难点,推动其商业化应用。制备具有纳米柱阵列结构的Fe3O4和SnO2负极材料,探究它们的电化学性能具有现实意义。基于此,本论文主要研究内容及结果如下:(1)采用脉冲激光沉积技术结合超薄双通阳极氧化铝模板制备了高度有序的Fe3O4和SnO2纳米柱阵列。利用扫描电子显微镜、X射线衍射、X射线光电子能谱和扫描透射电子显微镜等方法对制备所得的Fe3O4和SnO2负极材料进行了形貌、元素组成和微观结构表征,研究结果表明,制备所得的纳米柱排列高度有序,且元素组成无其他杂质。此外,纳米柱在Cu箔集流体上的生长模式为外延生长,晶体结构匹配良好,界面清晰。(2)将高度有序的Fe3O4纳米柱阵列用做锂离子电池负极材料,对其电化学性能进行分析。研究结果表明,Fe3O4纳米柱阵列负极材料具有稳定的长循环性能。它的放电比容量在第400次循环时仍能保持在350 m Ah/g左右。除此之外,它还具有出色的倍率性能。在60 C的超高电流密度下,它的放电比容量约为312.5 m Ah/g,且当电流密度降低至2 C时,放电比容量可以恢复至550.6 m Ah/g左右。分析认为,其良好的电化学性能可归因于排列有序的纳米柱阵列结构,以及纳米柱阵列与Cu箔集流体之间紧密的界面结合。(3)将高度有序的SnO2纳米柱阵列用做锂离子电池负极材料,对其电化学性能进行研究。结果表明,它不仅具有优异的长循环性能,还具有极佳的倍率性能。在2000-6500次循环中,它的放电比容量一直稳定在313 m Ah/g左右,未见衰减。此外,在64 C的超高倍率下,依然保有277.8 m Ah/g左右的放电比容量,且在电流密度降低到2 C时,放电比容量可恢复至670 m Ah/g左右。研究认为,高度有序的纳米柱阵列结构能有效缓解SnO2在充放电过程中发生的巨大体积膨胀,可以保持纳米结构的完整性,极大地提高了其电化学性能。
其他文献
“互联网+”时代下,信息传播方式不断更新,逐步突破了空间和时间的限制。突如其来的新冠肺炎病毒,使得各高校纷纷暂停返校,微课视频以时长短、表现新颖、核心突出、方便快捷等优点,为疫情期间高校教学问题的解决提供了助力。由于微课视频不受空间和时间的制约,用户与视频数量递增,微课视频的设计质量直接影响用户获取视频信息的效果和效率,如何提升设计质量成为重要问题。本文以注意力为切入点,挖掘微课视频设计的用户需求
自洽场理论(SCFT)是目前描述嵌段共聚物稳态相行为最成功的理论之一,其数值模拟结果与实验吻合度很高。本文主要用自洽场理论研究了对称ABA(柔-半刚-柔)三嵌段共聚物在球面上的相行为,柔性嵌段采用高斯链模型推导的传播子方程,半刚性嵌段则是蠕虫链模型推导的传播子方程,传播子方程的数值求解用算子分裂对各个算子分别计算,再计算自洽场方程组进而得到哈密顿量极小值,此时哈密顿量极小值对应的密度分布和指向分布
搅拌摩擦焊(Friction stir welding,FSW)技术作为一种高效的固相连接技术,在满足航空航天高比强有色金属的高可靠、长寿命、低成本连接方面具有独特的优势。获取高服役性能的FSW焊接接头已成为航空航天制造技术提升的关键。然而,FSW成形的基础为形成一个高温高应变速率的摩擦大变形体,且摩擦大变形体流动行为又决定了FSW接头的微观组织及最终力学性能。因此,本文通过标记材料示踪法,揭示F
再生混凝土是一种用再生骨料来代替部分或全部天然骨料的新型建筑材料,随着再生混凝土技术在建筑结构领域中的广泛运用,其耐高温性能是建筑结构设计中必须考虑的一个重要因素。为研究玻璃纤维对再生混凝土高温性能的改善效果,设计抗压强度等级为C30的混凝土,制作288个立方体试件,进行常温与高温试验,并观察试验现象,之后对这些试件进行高温后的力学强度试验,初步探讨了玻璃纤维改善再生混凝土高温后力学性能的机理。主
随着传统建筑业的不断转型升级,建筑工业化成为必然趋势,装配式建筑则是实现建筑工业化的重要途径。装配式剪力墙结构是装配式建筑的重要结构形式之一,它符合高层建筑经济性要求和建筑工业化发展需要,具有广阔的应用前景。但目前国内外已有的装配式剪力墙结构存在整体性和面外稳定性偏低、接缝连接构造复杂、塑性变形能力较弱等缺点。鉴于此,课题组提出了一种新型的装配式钢套管组合剪力墙,本文对其在竖向受拉与水平荷载共同作
现如今全球能源危机与日益严重的环境污染问题推动了电动汽车的发展,而我国是一个富煤缺油少气的国家,伴随着国内汽车保有量的逐年上升,电动汽车的研究也成为我国当下热点之一。为了使电动汽车安全高效的运行,电池作为电动汽车核心,能对其进行有效管理的电池管理系统不可或缺。电池管理系统中荷电状态的准确估算,既能够防止电池过充过放,又能够作为低电量限流阈值还能作为整车控制策略阈值。其中剩余寿命的预测,可以为用户提
近年来,随着航空发动机涡轮进口温度不断提高,航空工业对发动机主要承力部件——涡轮机匣的耐高温、抗腐蚀性等要求愈加严苛。在机匣的铸造过程中,合金熔体与陶瓷型壳在高温下长时间紧密接触,容易发生多种复杂作用,导致铸件表面产生严重粘砂,表面粗糙度增大,表面质量下降。本工作研究承力机匣铸造用K423A合金与Zr Si O4陶瓷型壳间的界面反应行为,分析温度及保温时间对于界面反应的影响;研究K423A合金中主
钢结构是一种集节能、高强、方便等优点于一体的具有较好发展潜力的结构体系。自上个世纪两次严重的地震造成的破坏给传统钢结构体系带来巨大冲击之后,大量学者对如何提高钢结构体系的整体可靠性展开了研究。为了避免节点发生脆性破坏,许多学者提出一种提高节点延性和耗能的新型节点构想,其原理是将塑性铰远离节点域而形成于梁内。目前,对强轴梁端连接的方式已经开展了大量的研究工作,对弱轴连接的研究相对较少。本文对梁柱局部
可再生能源是人类延续和社会进步需要重点关注的方向,随着便式电子设备在人们日常生活中的普及,电池已被广泛用作一种高效的电化学储能装置。水系锌离子电池(Aqueous zinc ion batteries,AZIBs)以其高理论容量(819 mAh·g-1),低负电位(-0.763 V vs.SHE),高性价比而成为可充电水性系统中的一种电池,已逐渐进入人们的视野。尽管有这些优点,AZIBs应用的关键
随着现代电机电磁负荷增强,电机内各部件温度也相应升高,而温升过高则会直接影响电机使用寿命和运行稳定性。因此,研究电机内温升的计算及冷却结构的强化具有重要意义。论文主要由以下内容组成:1、通过分析国内外目前对通风冷却电机内流体场和温度场研究进展,借鉴电机领域电磁场、流体流动和传热相关原理,采用轴径向混合通风冷却结构并优化其结构参数,用于降低电机温升,强化冷却性能。2、以一台YJK450-6、400k