【摘 要】
:
本文研究了下列一类边界带临界非线性项的Neumann问题其中D1,2 是在范数为∫R+N|▽u|2的 C0∞(R+N)的完备化,y=(y’,y)∈R2 ×RN-3,K(y)=K(|y’|,y)是有界的非负函数,2#=2(N-1)/N-2为Sobolev嵌入不等式中的临界指数.本文通过在有限维约化方法中引进局部Pohozaev恒等式,证明了如果N≥5,K(r,y)有一个稳定临界点(r0,y0),r0
论文部分内容阅读
本文研究了下列一类边界带临界非线性项的Neumann问题其中D1,2 是在范数为∫R+N|▽u|2的 C0∞(R+N)的完备化,y=(y’,y)∈R2 ×RN-3,K(y)=K(|y’|,y)是有界的非负函数,2#=2(N-1)/N-2为Sobolev嵌入不等式中的临界指数.本文通过在有限维约化方法中引进局部Pohozaev恒等式,证明了如果N≥5,K(r,y)有一个稳定临界点(r0,y0),r0>0,使得K(r0,y0)>0,则上述问题有无穷多个解.我们的结果推广了文献[22]中的结果,包括了K(r,y)的临界点是鞍点的情况.
其他文献
设μ为Rd上具有紧支撑的Borel概率测度,若存在可数集Λ(?)Rd使得E(Λ):={e2πi:λ∈Λ}构成L2(μ)的标准正交基,则称μ为谱测度且称Λ为μ的谱.本文是综述Strichartz,Laba和汪扬以及Dutkay,Haussermann和赖俊杰的论文,主要贡献是系统地整理,修改,简化相关理论及其证明,为后续研究做准备.本文主要内容分为三节.在第三节,我们介绍了 Stricha
目前,中国进入了教育改革的深水区和攻坚期,需要教师具有教学批判性思维,才能知道如何更好地将批判性思维融入课堂从而引领学生发展和提升批判性思维。相对于职后培训,利用高等师范院校的教育资源对职前教师的教学批判性思维进行培养会更加便捷有效。然而,当下职前教师的教学批判性思维的发展和培养研究都还比较薄弱,没有受到足够重视。而高等师范院校中的化学教育研习活动不仅是一个丰富职前教师教学实践知识的活动,也是一个
本文将考虑如下Neumann边值问题其中Ω(?)RN是边界光滑的有界区域,n是(?)Ω的单位外法向量,c,λ是正常数,γ是非零常数,K(x)是C2(Ω)∩C1(Ω)上的正值函数.不失一般性,假设c=1.我们将证明当γ0且N=2时,方程在λ充分小时存在山路解,并且当λ → 0时,方程存在边界波峰解或者内部波峰解.
DP-染色作为列表染色的一般情况,是由Dvorak和Postle在2017年引入的概念.本文研究的是射影平面上简单有限无向图的DP-染色问题.DP-染色问题区别于经典的平面染色问题,是图论染色中一个非常新颖的方向,得到很多图论学者们的青睐.由于图的DP-染色是图列表染色的一般情况,所以在研究之前,不得不先定义图G的列表分配L,然后给出子图H以及(L,H)覆盖的定义,之后便有了图G是(L,H)-可染
数学是高中生必修的主要科目之一,高中数学知识的学习锻炼了学生的思维和逻辑,高中数学成绩也是教师、家长关注的重点。近年来,随着教育心理学的发展,影响学生数学学习与数学成绩的因素研究已逐渐转向对非智力因素的研究。虽然非智力因素包括的范围较广,但对数学学习焦虑、数学学习策略、数学学习自我效能感、数学学习态度等影响较大的因素引起了许多研究学者的广泛关注与研究。以往的相关研究结果显示学生的数学学习焦虑能负向
本文主要研究当ε → 0时,以下变分问题min {∫D|γ▽v|pdx:v ∈ W1,p(D),v|r=φ(x),v|Sε≥φ(x)}解的渐近行为,这里10,Sε(?)∑以及φ(x),φ(x)∈C∞(D).在适当的假设下,我们证明了如下两个结果:若γ(x)为单位矩阵且p=n,则能量泛函
设C是有限域Fq上的[n,k,d]线性码.如果码C的参数满足:d=n-k+1,则称其为极大距离可分码,简称MDS码.MDS码在实践中有重要意义.例如:MDS码可以被很好地应用于分布式存储系统和随机错误信道中.MDS码的具体构造在编码学中是一个基本的问题.最常见的MDS码是广义Reed-Solomon(GRS)码和扩充的GRS码,GRS码由其定义集和赋值多项式决定.2017年,Beelen等第一次构
This thesis is concerned with the existence of nontrivial solutions for the quasi-linear elliptic equations -Δpu-Δp(|u|2α)|u|2α-2u+V(x)|u|p-2u=|u|q-2u,x∈RN,where α≥1,1
图多项式理论是图论的一个重要组成部分,是图的各种代数不变量的总称,其主要内容包括:特征多项式、控制多项式、图的色多项式、匹配多项式等.通常我们会利用特征多项式研究矩阵的最大特征值和最小特征值,也会通过图多项式的系数得到一些与图相关的重要结论.本文主要研究了一些图的全控制多项式和特征多项式.在论文的前半部分我们主要研究的是一些图的全控制多项式.设点集Dt(?)V(G),对于V(G)中的任意一个顶点都
随着科学技术的发展,对于复杂的物理过程的研究,计算机模拟试验的使用变得越来越受欢迎。计算机试验是通过代码化的数学模型来描述物理现象。但是很多物理现象极其复杂,导致其对应的数学模型也不易进行模拟试验,因此必须在有限的试验资源下尽可能多的得到有价值的试验结果。序贯自适应试验设计就是一种能够不断为计算机试验带来新的有用的试验信息的方法,该方法能不断根据前期的试验信息建立代理模型,并依据建立的代理模型和相