论文部分内容阅读
体积小、携带方便、低功耗、转换效率高的温度不敏感的全固态激光器在便携式激光设备和激光雷达方面都有着非常重要的应用前景,尤其是在人眼安全激光测距、激光指示器以及3D激光雷达系统等领域的应用。此外,高能量、单频特性良好的双脉冲1064nm激光在雷达系统中具有重要的需求,可以作为获得1.57μm单频双脉冲OPO/OPA系统的泵浦源,而1.57μm单频激光是作为探测二氧化碳浓度的差分吸收雷达系统的重要光源之一。本文的研究工作主要从温度不敏感激光技术和高能量单频双脉冲激光源两个方面展开。 在温度不敏感激光技术方面的研究工作包括了理论和实验研究两部分。首先对温度不敏感激光技术的发展现状进行了概述,介绍了减缓泵浦光的波长温漂、采用吸收谱宽的材料以及增大泵浦光吸收路径等三种实现激光器温度不敏感的基本方法。该激光器是基于激光二级管泵浦Nd∶YAG六边形板条结构来实现宽温度范围工作。泵浦光采用定制的激光二极管阵列,它们由三种不同波长间隔排列组成,这样可以有效降低温漂的影响。通过理论仿真发现,当掺杂浓度为1.0 atm%时,Nd∶YAG增益介质吸收长度大于46mm时,增益介质对808nm泵浦光的吸收效率在-30℃~70℃温度范围内都能大于93%。根据仿真结果和几何学原理,完成了六边形板条结构的设计。谐振腔采用的是对温度和振动不敏感的正交Porro棱镜的偏振耦合输出腔。实验研究部分主要包括了平平腔实验,准连续输出实验以及正交Porro棱镜腔的调Q输出初步实验。激光器在实际9℃~45℃的温度变化范围内调Q运转时,最大输出脉冲能量约为112.4mJ,光-光转换效率约为13.8%,斜率效率达到22.7%,在这个温度范围内,不考虑泵浦LD输出能量的波动校正,调Q脉冲输出能量RMS值为6.03mJ,最大能量波动为8.40%,此时的激光脉冲宽度大致为14.3ns,输出光斑约为5.0mmx5.0mm方形光斑,输出激光的发散角全角约为3mrad。输出激光x和y方向光束质量因子分别为:Mx2=19.2,My2=23.9。 混合MOPA系统是一种获得高能量单频激光脉冲输出的有效方法,它既结合了光纤放大器转换效率高,光束质量好等优点,同时又发挥了固体放大器在脉冲放大的优势。该技术路线和传统的种子注入技术相比有一定的优势,特别是在严苛的工作条件中,它可以避免复杂的激光腔长主动控制过程,从而使激光系统更加稳定地单频工作。激光脉冲放大过程对信号光的单频特性影响较小,所以只要种子的单频特性足够好,输出放大脉冲的单频特性也将维持足够好。NPRO激光器作为种子激光器,它可以提供稳定的单频种子源,AOM调制获得所需的双脉冲激光脉冲序列,激光脉冲经过三级光纤放大得到3μJ/脉冲,接着又通过双程的Nd∶YVO4板条放大器和双程zig-zag Nd∶YAG板条放大器,最终输出13mJ/脉冲的双脉冲激光。激光系统的重复频率为30Hz,输出激光的脉宽约为20ns,光束质量因子M2<1.30,光谱线宽约为34.1MHz。输出的1064nm单频激光可以作为更高能量激光系统的种子激光,同时也可以作为光参量振荡系统的泵浦源,从而获得真正用于探测二氧化碳浓度的1572nm的单频激光。 论文最后对两个方面的研究成果进行了归纳总结,提出了论文研究工作存在的一些不足,并为后续的工作开展提出一些建议。