磁性外延异质结构薄膜中的光发射电子显微学研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:wMystarw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自旋电子学作为一门快速发展的学科对于物理学前沿理论的开拓与信息技术的进步都具有重要的意义,而作为自旋电子器件核心结构的磁性纳米多层膜体系也因此成为了人们关注的焦点。这其中一个重要的研究领域就是关注磁性薄膜体系中受表面界面等因素调控的磁畴结构。光发射电子显微镜可以兼容多种光源实现激发过程,同时对于表面信息更为敏感,因此成为了研究薄膜体系中磁畴结构的重要技术手段。另一方面,深紫外激光技术的重大突破使得光发射电子显微镜摆脱大型同步辐射装置的限制而开展磁畴结构研究变为了可能。因此本论文以光发射电子显微镜作为核心表征技术手段,在具有单晶外延结构的铁磁/反铁磁异质薄膜体系中开展了关于近费米能级的光电子激发磁成像技术的探索,主要成果如下:(1)以偏振态可调的177.3 nm深紫外激光作为激发光源接入光发射电子/低能电子显微镜(PEEM/LEEM)系统并实现了优于20 nm空间分辨率的表面观测。设计样品传输装置并完成了光发射电子显微镜与分子束外延联合系统的搭建工作,使得在单晶薄膜体系中开展PEEM磁成像观测实验具备了技术条件。(2)在具有外延结构的高质量FePt薄膜中利用深紫外激光-光发射电子显微镜作为表征技术对该体系在近费米能级的光电子激发磁畴成像进行了研究。首先在具有(001)取向的单晶L10-FePt薄膜中利用圆偏振态的深紫外激光直接观测到了L10-FePt的磁畴结构并测定磁成像空间分辨率为43.2 nm,与XMCD-PEEM技术处于同一水准。此外通过在缓冲层结构中引入纳米台阶结构实现了FePt薄膜的(001)与(111)双取向外延晶体结构,并在该体系内使用线偏振态深紫外激光观测到了磁线二色衬度,其强度为磁圆二色衬度的4.6倍。利用micro-LEED技术对出现磁线二色衬度区域的结构进行了更为精确的分析,证明在纳米台阶两侧FePt的晶体结构由有序排列的FCT(001)结构变为无序排列FCC(111)结构,在此过程中晶体结构在过渡区域完成晶向的转变后FePt原子排列的有序度得到了暂时保留,形成了FCT(111)中间状态,该状态具有结构的二重对称性与磁矩在空间的倾角排列状态,据此进一步阐明了出现磁线二色效应区域的晶体结构与磁结构,同时为后续理论研究的深入开展确定了方向。(3)利用分子束外延技术制备了具有单晶外延结构的反铁磁IrMn3薄膜并在具有(001)外延取向的IrMn3薄膜中利用线偏振态UV光观测到了存在偏振方向依赖关系的PEEM图像衬度并确认其来源于IrMn反铁磁性引发的线二色效应。此外在具有(111)外延取向的IrMn3薄膜中没有观测到类似的衬度,这既证明了以阈激发PEEM技术研究反铁磁材料磁结构的可行性同时也说明IrMn3的反铁磁线二色性与晶体结构之间存在关联。
其他文献
强关联电子体系往往是包含有局域轨道的d电子以及f电子的单质或者化合物。在这样的体系中,由于多个自由度的耦合,比如多轨道自由度、相对论效应导致的自旋-轨道耦合、晶体场效应等等,往往会使该体系表现出复杂多样的奇异性质。最常见的有庞磁阻效应、重费米子现象以及非常规超导电性等等。这些新奇量子态中的诸多性质如重费米子材料中的局域巡游二重性、非常规超导体的电子配对机理等都没有研究的很清楚。一方面,由于该体系中
强关联巡游电子系统的临界现象在现代的凝聚态物理研究中拥有重要的地位,它被广泛认为是重费米子化合物中非费米液体行为与高温超导中奇异金属相等奇异物理现象的起源。其中特别引人关注的一类量子临界点(Quantum Critical Point,QCP)可在零温下出现自旋密度波(Spin Density Wave,SDW)长程序的二维金属中找到。由于强关联系统自身复杂以及非微扰的特性,这一类的系统属于现代凝
近几十年来,人们对于自然界中拥有介观尺度的微生物保持着浓厚的兴趣,对其动力学行为的研究也取得了长足的进步。不考虑微生物体内众多复杂的回路,人们依据其动力学原理设计出一些仿生的人造活性胶体。理解这些复杂现象的物理机制,开发这类系统的实际应用,已成为当今软凝聚态物理中的一个重要的研究方向。为了开发出更好的模拟方法,人们发展了连续性方法和离散性方法这两大类方法,其中粗粒化方法因为高效简便并且包含了更多的
纳米光子学是光学和纳米科学相结合的一个新兴领域,旨在实现亚波长尺度下对光的操控和研究光与纳米尺度物体的相互作用,在量子物理、光催化化学以及生物传感等领域有着广泛的应用。自由空间光子与振荡电荷耦合形成的极化激元为这一目标提供了有效的途径。散射型扫描近场光学显微镜具有突破衍射极限的纳米级空间分辨率,可以在实空间对极化激元进行探测和成像。但极化激元的深入研究需要了解它们的光谱信息,故进一步发展近场成像技
具有层状结构的化合物因其丰富的物理性质和潜在的应用价值受到诸多领域的关注,层状化合物的基本结构单元可以大致分为电中性层和带电层两大类。对于电中性层沿某个晶体学方向堆垛而成的化合物,层间相互作用一般是较弱的范德华力,在结构调控时可以采用机械解离、离子插层和化学掺杂等方法,系统地调控层间距离、层数和层间相互作用,以期调控载流子浓度和物性;对于由电正性层和电负性层沿某个晶体学方向交替堆垛而成的化合物,其
量子信息与量子计算的研究内容,是利用量子力学思想来完成信息处理的任务。在该学科的发展中,产生了量子纠缠、量子相干等独特的量子力学资源,这些资源成为量子计算、量子密码学等领域最重要的基本资源。因此,度量、量化这些资源的方法也成为一个重要的研究方向,即量子信息处理理论。其瞩目的成果包括度量纯态纠缠的冯诺依曼熵,度量两体混态纠缠的形成纠缠熵,度量相干性的量子相干,以及任意熵,量子失协等。量子多体系统是实
铜氧化物高温超导体具有奇异的正常态性质和非常规超导电性,一直是凝聚态物理研究的一个重要领域。经过三十多年的努力,高温超导机理仍然没有形成共识。角分辨光电子能谱技术(ARPES)是研究材料在动量空间中电子结构的直接和有力的工具,在铜氧化物高温超导体研究中发挥着重要作用。本论文通过运用高分辨角分辨光电子能谱技术,研究了铜氧化物高温超导体Bi2Sr2Ca Cu2O8+(Bi2212)中电子结构随掺杂的演
在强光场辐照下,凝聚态量子材料中各种粒子及准粒子(例如光子、电子、声子、等离激元等)相互耦合,能够产生高度非线性的电子和光学行为,并可能伴随着新的量子态的产生,具有重要的基础科学意义及广阔的应用前景。随着实验技术手段的不断发展,各类新奇的物理现象从凝聚态物质中不断涌现,深入理解其激发态动力学过程已经成为光学、材料科学领域的研究热点。本论文中,我们基于含时密度泛函理论,以三个研究课题为切入点,从第一
磁性斯格明子是一种具有拓扑保护的非平庸的自旋结构,其稳定性和丰富的动力学行为主要由其拓扑物理性质决定。目前在不同材料体系发现了尺寸不同的磁性斯格明子,其尺寸甚至可以小到几个纳米。单个磁性斯格明子可看成一个带有拓扑电荷的准粒子,具有粒子性,可以通过外场调控其生成、湮灭以及运动,且驱动磁性斯格明子运动所需电流密度比传统磁畴低5-6个数量级。这些特性使得磁性斯格明子可以作为信息存储单元,应用于“算盘型”
通往纳米科技革命的道路上离不开具有巨大比表面积的纳米材料,如具有形状各向异性和丰富成分配比的磁性纳米晶体材料。这些磁性纳米材料有望在高密度磁存储介质、交换耦合的磁性复合物和相关纳米器件中获得应用。本博士论文的前两个工作,则分别针对磁性单质金属和合金纳米线,研究其制备方法、生长机制和磁性行为等。研究表明表面和界面的结构不连续和自旋的重取向会给磁性纳米线带来奇异的磁性性质,这非常有利于其在自旋电子学和
学位