利用光致泳效应操控活性胶体的模拟研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:shopfloor
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近几十年来,人们对于自然界中拥有介观尺度的微生物保持着浓厚的兴趣,对其动力学行为的研究也取得了长足的进步。不考虑微生物体内众多复杂的回路,人们依据其动力学原理设计出一些仿生的人造活性胶体。理解这些复杂现象的物理机制,开发这类系统的实际应用,已成为当今软凝聚态物理中的一个重要的研究方向。为了开发出更好的模拟方法,人们发展了连续性方法和离散性方法这两大类方法,其中粗粒化方法因为高效简便并且包含了更多的细节而受到普遍关注。本文主要采用分子动力学和多粒子碰撞动力学相结合的方法研究活性胶体粒子的趋光行为及其应用。主要目标是探究其背后的动力学机理,更好地服务于实际应用。第一章主要介绍了活性胶体粒子这一研究领域的现状和不足。第二章主要介绍了模拟中采用的方法,重点介绍了多粒子碰撞方法。该方法可以在保证各物理量守恒的同时准确高效地描述系统中复杂的相互作用。第三章介绍了活性胶体粒子的趋光性,揭示了三种相互竞争的动力学机制,为操控复杂环境中的胶体粒子提供了新方法。第四章讨论了利用光致泳效应操控胶体粒子。通过光加热产生的温度梯度或光催化产生的浓度梯度约束并使胶体粒子产生定向运动。实现了纯粹利用泳力操控胶体粒子。第五章说明了在光强梯度或者温度梯度下,同样可以实现布朗马达。第六章讲述了多个存在磁偶极矩相互作用的胶体粒子形成稳定旋转的团簇。最后,总结并讨论了活性胶体粒子的后续研究。
其他文献
上世纪八十年代量子霍尔效应的发现掀起了凝聚态物理研究的新热潮。寻找和研究新的量子态成为了凝聚态物理研究的重要方向。随着对整数以及分数量子霍尔效应的不断研究,研究者们最终通过引入数学上拓扑的概念对这个新的量子态进行了解释。随后,人们试图寻找在零场下具有量子霍尔效应特性的量子态。紧接着,通过理论计算、新材料制备以及各种测试手段证实存在这种类似于量子霍尔效应的新量子态,即拓扑绝缘体态。对拓扑绝缘体的研究
近年来纯自旋流的研究已经成为自旋电子学方向的研究重点,它在自旋传输过程中允许只有自旋的传递,没有电荷的输运,因而拥有热耗低、角动量转移效率高、无奥斯特场产生等优势。产生纯自旋流的方式很多,主要有:非局域自旋阀、自旋霍尔效应、自旋塞贝克效应、自旋泵浦效应等。根据其产生纯自旋流方式的不同,目前自旋电子学已进一步发展出一系列分支,包括:自旋-轨道电子学(spin orbitronics),自旋卡诺电子学
自量子霍尔效应被发现以来,拓扑电子态因其独特的性质受到了人们的广泛关注。人们已经在物理模型和材料实现方面对平衡拓扑电子态有了很深入的认识。然而,因研究方法的缺乏和系统的复杂性,非平衡拓扑物态的研究仍然停留于简单物理模型上。作为非平衡态之一,时间周期驱动体系呈现出了丰富的拓扑相,这使得真实材料系统的预测更加迫切,并预示着在其中发现新拓扑现象的可能性。本文致力于用第一性原理计算和物理模型分析相结合的方
极化激元学研究的是入射光光子与材料中各种粒子耦合形成的新的电磁场模式。对极化激元的研究本质上都是求解麦克斯韦方程组的过程,是计算自由电子响应、声子响应或其它响应引起的负的材料介电常数实部下的感应电磁场。极化激元是局域在材料界面传播的电磁场,可以突破传统的衍射极限,实现亚波长尺度上的电磁场操控,增强光与物质的相互作用,在信息、物理、化学、生物、能源等领域具有重要的研究意义和应用。本文中我们给出了纳米
自然界中许多基本过程,例如化学反应、超导、巨磁阻等,都受到多电子动力学的控制。强激光脉冲与原子的相互作用会产生许多非线性现象,诸如多光子电离、高次谐波产生和多电子电离等。深入理解一些简单体系的多电子动力学过程,例如氦原子的双电离过程,有助于我们理解更加复杂体系的多电子动力学过程。本论文通过数值求解含时薛定谔方程研究了氦原子在深紫外激光脉冲作用下的双光子双电离过程,主要结果总结如下:第一,基于原子结
拓扑量子态和拓扑量子材料的理论、实验研究近年来方兴未艾,成为凝聚态物理研究领域的重要前沿。拓扑序作为一种全新的物质分类概念,与对称性一样是凝聚态物理中的基础性概念。对拓扑序的深刻理解,关系到凝聚态物理研究中的诸多基本问题,例如量子相,量子相变,以及量子相中的许多无能隙元激发等。拓扑量子态的研究有两方面的重要意义:其一,由于凝聚态体系中存在诸多复杂的对称性,能够实现丰富的准粒子(元激发)。例如近年来
上个世纪80年代量子霍尔效应及相应各种新奇量子效应的发现开启了拓扑量子材料研究的新时代。由于其奇异的物性和巨大的应用前景成为凝聚态领域热门的研究课题。而拓扑量子材料在科研人员的努力下不断地发展继而出现了多个分支。他们根据不同的能带特征,可分为拓扑绝缘体、Dirac半金属、Weyl半金属、拓扑超导体和拓扑nodal line等。其中,Weyl半金属材料作为一种具有时间或者空间反演对称性破缺的拓扑半金
单个分子具有确定的空间轨道和能级结构,是天然的零维量子限域体系。以单分子晶体管为代表的单分子器件,不仅是电学器件微型化的终极极限,也是研究原子分子尺度上各种微观相互作用等基本物理问题的平台。单分子晶体管器件不仅能够在外加栅压得作用下实现单个分子级别上电子态、自旋态的控制,还能通过改变分子结构和器件结构构造复杂的量子体系。本文以单分子晶体管为工具,研究单个分子在不同情形下的输运行为以及背后的物理原理
强关联电子体系往往是包含有局域轨道的d电子以及f电子的单质或者化合物。在这样的体系中,由于多个自由度的耦合,比如多轨道自由度、相对论效应导致的自旋-轨道耦合、晶体场效应等等,往往会使该体系表现出复杂多样的奇异性质。最常见的有庞磁阻效应、重费米子现象以及非常规超导电性等等。这些新奇量子态中的诸多性质如重费米子材料中的局域巡游二重性、非常规超导体的电子配对机理等都没有研究的很清楚。一方面,由于该体系中
强关联巡游电子系统的临界现象在现代的凝聚态物理研究中拥有重要的地位,它被广泛认为是重费米子化合物中非费米液体行为与高温超导中奇异金属相等奇异物理现象的起源。其中特别引人关注的一类量子临界点(Quantum Critical Point,QCP)可在零温下出现自旋密度波(Spin Density Wave,SDW)长程序的二维金属中找到。由于强关联系统自身复杂以及非微扰的特性,这一类的系统属于现代凝