论文部分内容阅读
微机电系统(MEMS)目前广泛应用于航空航天、生物医疗、汽车电子、信息通讯和环境监测等领域。MEMS是采用先进复合材料和微机械加工技术将微组件进行微电路集成,微组件的尺度通常在微米乃至纳米量级,且其核心组件通常可简化为微结构单元,如微梁、微板、微壳等。一方面,功能梯度材料(FGM)和功能梯度压磁/压电材料(FGPM)作为当前先进复合材料和智能材料的典型代表,因其可设计性,它能实现结构不同部位对材料功能的特殊环境要求以及智能控制,另一方面,梁模型以其简单而高效的结构形式,广泛应用于现代工程诸多领域,如微传感器、微驱动器、微谐振器等。随着近些年微/纳米测试技术的迅猛发展,许多材料力学实验已表明:微结构的静动态力学特性均呈现出尺度依赖性。但经典连续介质力学理论无法解释尺度效应这一现象,学者们为此提出了不同的非经典连续介质力学理论,如非局部弹性理论、偶应力理论和非局部应变梯度理论等。在实际工程中,微结构会遇到各种复杂的服役工况,如湿-热环境、磁-电-热环境。分析多场耦合作用下此类微结构的静动态力学特性对于MEMS核心组件的安全与设计、功能与优化、智能与控制具有十分重要的意义,这也是复合材料细观力学和纳米力学优先发展的前沿课题,因而目前备受学者们关注和重视。本文以MEMS中复合材料微梁结构单元的静动态力学行为具有尺度效应为研究背景,在两类位移场描述法下采用一种n阶广义梁理论(GBT),在Eringen非局部弹性理论框架下和Hamilton体系下对服役于特定多物理场作用下功能梯度微梁的耦合静动态响应分析实施了力学建模,寻求有效且优化的数值方法实施了多物理场作用及多因素影响下功能梯度微梁耦合静动态响应分析的定量数值求解。为了便于解耦,为此提出一种改进型广义微分求积法(MGDQ)求解功能梯度微梁在多物理场作用下的耦合振动问题。为避免耦合屈曲问题求解的再次解耦,则首次采用了振动与屈曲这两类静动态力学行为之间的二元耦联性实施解耦,统一编写了两类问题MGDQ法数值求解的MATLAB计算程序。当考虑有阻尼作用情况时,粘弹性FGM/FGPM微梁结构振动的特征频率为复数,应用MGDQ法则很难快速准确的识别有效频率,因而采用一种扩展型广义Navier法求解了特定多物理场作用下三种典型边界FGM/FGPM微梁的粘弹性自由振动问题。具体来讲,本文的主要研究内容包括:(1)基于n阶GBT和Eringen非局部弹性理论,以轴向位移、弯曲变形和剪切变形项横向位移为基本未知量描述位移场,在Hamilton体系下统一建立了湿-热-力耦合作用下多孔FGM微梁静动态响应分析的力学模型,推导出了控制方程和非局部边界条件。该模型考虑了材料加工缺陷微孔隙的影响,采用了双参数Winkler-Pasternak弹性地基,同时考虑了湿度与温度沿梁厚度方向按不同类型稳态分布以及材料物性随温度变化的相关性,基于含孔隙率修正的Voigt混合幂率模型表征FGM微梁的材料属性。采用MGDQ法数值研究了弹性地基上多孔FGM微梁在湿-热环境中以及在初始轴向机械力作用的耦合振动和耦合屈曲特性。此外,考虑了外加横向静载荷的作用,应用Navier法研究了多孔FGM简支微梁在湿-热-力共同作用下的耦合弯曲特性。(2)考虑了材料结构的粘弹性以及地基粘弹性的外阻尼效应,提出了三参数粘弹性地基上多孔功能梯度粘弹性微梁模型。基于n阶GBT和Eringen非局部理论,以轴向位移、截面转角和横向位移为基本未知量描述位移场,应用Hamilton原理,建立了粘弹性地基上多孔FGM微梁在湿-热环境中以及在初始轴向机械载荷共同作用下的动力学方程并导出了非局部边界条件,应用一种扩展型广义Navier法数值分析了3种典型边界下该粘弹性FGM微梁的有阻尼自由振动特性。(3)考虑了压电和压磁两种材料复合而组成的功能梯度材料,采用n阶GBT,基于多场耦合Eringen非局部弹性理论和Maxwell方程,以轴向位移、弯曲变形项横向位移、剪切变形项横向位移、电位和磁位为基本未知量,在Hamilton体系下统一建立了磁-电-热-力耦合作用下FGPM微梁静动态响应分析的力学模型,推导出了控制方程和非局部边界条件。考虑了外电场极化、外磁场磁化以及温度分布均沿FGPM微梁的厚度方向,采用了双参数弹性地基模型,应用MGDQ法数值研究了弹性地基上FGPM微梁在磁-电-热环境中以及在初始轴向机械力共同作用的耦合振动和耦合屈曲特性。此外,考虑了外加横向静载荷的作用,采用Navier法分析了FGPM简支微梁在磁-电-热-力共同作用下的耦合弯曲特性。(4)从能量耗散角度出发,采用三参数粘弹性地基模型,同时考虑了材料结构内阻尼因素的影响,提出了磁-电-热-力-粘弹作用下FGPM微梁的动力学模型。基于多场耦合Eringen非局部理论,以轴向位移、截面转角和横向位移为基本未知量描述位移场,采用n阶GBT,应用Hamilton原理建立了该模型的动力学控制方程,采用扩展型广义Navier法数值研究了该粘弹性FGPM微梁在磁-电-热环境中以及在初始轴向机械力共同作用下的有阻尼自由振动特性,深入分析了多因素对微梁动力学输出响应重要参数的影响。(5)在数值求解耦合问题方面,本文采用优化的数值方法实施了复杂系统的定量模拟计算。首先通过引入边界条件控制参数,应用MGDQ法实施了3种不同典型边界FGM/FGPM微梁耦合振动响应求解的MATLAB统一化编程。其次基于屈曲与振动这两种静动态力学行为之间的二元耦联性,通过编写相应循环子程序用以获得FGM/FGPM微梁系统的耦合屈曲静态响应。研究结果表明:该分析方法行之有效,此过程避免了微梁耦合屈曲响应求解的二次解耦,极大的提高了计算效率,二次优化了MGDQ这一数值分析方法。(6)揭示了屈曲与振动这两类静动态力学行为之间的二元耦联性,重点刻画了尺度效应、多参数及多因素对于多场耦合作用下FGM/FGPM微梁静动态响应的影响规律,深入分析了其耦合作用影响机理。研究结果可为今后MEMS中复合材料微梁结构单元的安全与设计、功能与优化、智能与控制提供必要的理论依据和应用参考,同时也为多场耦合作用下功能梯度此类复合材料微结构的力学行为研究提供两种切实可行、行之有效的数值分析方法。