苯丙氨酸修饰碳量子点的制备及光学性质的研究

来源 :河南大学 | 被引量 : 0次 | 上传用户:aileensa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳量子点(CDs)是一类新兴的零维发光碳纳米材料,通常是指表面具有不同钝化程度的碳纳米颗粒。光致发光的碳量子点具有两个显著特征:一是碳纳米颗粒小(低于10 nm);二是颗粒表面可以与其他分子通过共价键、非共价键或化学吸附等方式相互作用。此外,CDs具有良好的生物相容性、光稳定性、选择性和高灵敏度、可调谐的荧光发射和激发等优良性能,在细胞成像、荧光检测、光催化、光伏器件和光电探测器等领域具有广泛的应用。本论文采用溶剂热法制备了氮、硫掺杂碳量子点(t-CDs)。t-CDs具有双发射红色荧光,并且能够有选择性地检测Hg2+;此外利用苯丙氨酸(Phenylalanine,Phe)对t-CDs进行修饰,提高了t-CDs荧光量子效率,同时,将Phe修饰后的碳量子点作为荧光探针在细胞中成像。具体研究内容如下:(1)利用硫脲和柠檬酸作为反应物,采用溶剂热法制备出了氮、硫掺杂的碳量子点(t-CDs)。利用透射电子显微镜、原子力显微镜、X射线光电子能谱、拉曼光谱检测仪、X射线光电子衍射、傅里叶变换红外光谱仪等对t-CDs的形貌和结构进行了表征。结果表明:所制备碳量子点尺寸均匀,平均粒径为4.5 nm。t-CDs的晶格间距为0.21 nm,对应石墨烯的(100)晶面。碳元素多数以sp~2杂化碳的形式存在,碳量子点表面富含-NH2,-COOH和-SH等官能团。利用稳态荧光光谱研究了其光学性质,t-CDs的发射峰位为510 nm和630 nm,表现为双发射红色荧光,在水中的荧光量子效率为5.7%,在碱性条件下t-CDs由于质子化处于单分散状态,可以使荧光增强。此外,t-CDs可以有选择性地检测Hg2+,使荧光显著淬灭。(2)选用Phe对t-CDs进行修饰。通过控制反应温度,反应时间、pH值、Phe浓度等因素,使t-CDs在水中的荧光量子效率提高至20.8%。其形貌和结构的结果表明:t-CDs-Phe具有与t-CDs相似的形貌,N元素含量增加,并且荧光发射峰位蓝移至561nm。我们对t-CDs-Phe的荧光寿命衰减进行分析,相比于t-CDs,t-CDs-Phe的平均寿命增加到5.4 ns。t-CDs-Phe还具有良好的双光子激发荧光发射性质,在800 nm光激发下,t-CDs-Phe的双光子吸收截面为6.0×10-47 cm~4 s~1 photon-1。利用t-CDs-Phe对HeLa细胞成像,当激发波长为800 nm时,发出强烈的红色荧光,实现了t-CDs-Phe的双光子细胞成像。我们通过自下而上的溶剂热法制备了t-CDs,并通过Phe对t-CDs进行修饰,研究了t-CDs以及t-CDs-Phe的单光子和双光子激发荧光的光学特征,实现了t-CDs-Phe的双光子细胞成像,在近红外激发荧光成像方面展现出巨大的应用潜力。
其他文献
随着信息科学技术的迅猛发展,兼具磁电耦合的多铁性材料已成为高密度非易失随机存储器、新型传感器等微电子领域最有前途的应用对象。其中钙钛矿氧化物作为一类物理性质丰富的材料受到广泛关注,特别是磁电多铁钙钛矿氧化物薄膜。磁电多铁材料之所以备受关注在于它使得开发铁电和铁磁功能成为可能,如磁位可由电位补充用来建立四态存储元件;另外铁磁态与铁电态之间的耦合行为可诱发出新的性质独立于这两种状态之外。虽然磁电材料具
学位
氧化锌(ZnO)作为第三代半导体材料,具有禁带宽度大、介电常数小、无毒、廉价等优点,可广泛应用于蓝光和紫外光的发光器件,是目前电子领域发展的一个热点。此外,N型导电的ZnO薄膜可进行铝(Al)、镓(Ga)、铟(In)等三价原子的掺杂。在这些掺杂元素中,Al掺杂的ZnO(AZO)薄膜因为其低电阻率和可见光、近红外区的优良透光性,在薄膜晶体管、发光二极管、透明导电涂层、光电探测器以及太阳能电池领域展现
学位
全无机金属卤化物钙钛矿材料因其可调的发光颜色、高的载流子迁移率、高的光致发光量子产率(PLQYs)以及高的颜色饱和度而被广泛应用于照明和显示领域。相对于红光和绿光钙钛矿的高荧光量子产率以及器件的高外量子效率,蓝光钙钛矿发展相对缓慢。蓝光是LED三基色发光中必不可少的一种颜色,因此提高蓝光钙钛矿的发光效率是非常重要的课题。本文主要通过两个方面来研究蓝光钙钛矿量子产率的提高以及蓝光钙钛矿在LED器件中
学位
磁斯格明子是一种具有准粒子行为的拓扑自旋磁性结构,它首先在手性磁体中被观测,随后迅速成为自旋电子学领域的热门研究课题,引起了拓扑物理学界和磁学界相关科研工作者的广泛关注。由于磁斯格明子几何尺寸小、室温下稳定性高、驱动电流密度阈值低等特性使得它有可能在未来的低功耗、高密度计算技术中充当信息载体,对逻辑运算和信息存储器件等自旋电子设备的研究展现出巨大的潜力。实现基于斯格明子的自旋电子器件的关键在于有效
学位
石墨烯量子点(Graphene quantum dots,GQDs)是一种新型的量子点,因其众多优良的性质和广泛的应用前景从而受到了越来越多科学家的关注。与传统的石墨烯相比,石墨烯量子点不仅具备着石墨烯特殊的物理化学性质,还有着低细胞毒性、高生物相容性、荧光可协调性等优点。和传统的半导体量子点相比,避免了重金属的潜在毒性威胁,可应用于生物医学和传感器等领域。但是目前在量子点的制备中仍然存在着一定的
学位
石墨烯的成功合成启发人们对二维材料进行了广泛的研究。与块状材料相比,二维材料显示出许多独特的性质,例如高机械强度、高光催化活性、优异的光学和磁学性质。不仅如此,二维材料的这些特性还可以通过施加外部应变、控制缺陷或堆叠多层等方式轻松改变。这些优势使得二维材料为许多创新领域开辟了新的道路,二维压电材料的应用正是其中之一。压电材料在传感器、执行器、制动器和能量转换器等应用中有着广阔的前景。由于器件微小型
学位
碲化锗(GeTe)作为热电材料受到了广泛的关注,然而由于GeTe中固有的Ge空位导致其具有较高载流子浓度,限制了热电性能的进一步提升,并且其相变问题也给调控热电输运机制带来巨大挑战。研究表明Mn Te-SnTe-GeTe可在广泛的组成范围内形成固溶体,另有Sn/Mn元素用于Te基热电材料掺杂的报道,它们通过掺杂可以优化Te基材料的热电性能。综合上述问题与现象,本文利用机械合金化(MA)结合放电等离
学位
涡旋光束又称作“光学涡旋”,是一种具有特殊相位结构的光场,涡旋光束的特殊性在于具有中心孤立奇点和螺旋形相位波前,相位奇点处的光强为0,且光束中心处的相位具有不确定性,因此其强度呈中空环形分布。光学涡旋相较于其他光场,最显著的一个特征是携带轨道角动量(Orbital Angular Momentum,OAM),因此,携带OAM的光学涡旋在微粒操控、高分辨率成像、手性材料加工、光通信等方面都具有重要的
学位
2012年,王中林院士与其团队首次发明并报道了摩擦纳米发电机(TENG),TENG作为新的能量采集技术,能够获取周围环境中的机械能,并将之直接转换为电能。TENG的动力源不仅可以是水力、风力、波浪等大能源,而且还可以是下降的雨滴、人的走动、手指的触摸、机械的轰鸣、轮子的旋转等这些在周围环境里的随机能源。与传统的电磁感应发电机相比,TENG具有结构简单、制作成本低、重量轻、在低频率下电能转换效率较高
学位
在科技发展的推动下,人们的生活迎来万物互联的时代,大量信息在人机之间传递交互。当代的计算系统依托于冯·诺依曼结构,其存储模块与计算模块相互分离,制约了以巨大信息量为中心的智能化发展,仅对算法进行优化的解决方式不足以突破冯·诺依曼瓶颈。为此,科研人员从大脑神经系统快速并行的信息处理模式获取灵感,提出存算一体的人工神经网络结构的新型计算系统,通过制备单个具有突触功能的电子器件,实现人工神经网络的构建。
学位