含杂原子的新型聚集诱导发光分子的设计合成、构效关系和应用研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:zheng829
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过去二十年,聚集诱导发光(aggregation-induced emission,AIE)领域蓬勃发展,人们开发了丰富多样的AIE分子,为基础科学的研究提供了大量分子模型和素材,也为新型高性能功能材料的开发提供诸多机遇和选择。其中,杂原子的引入是AIE分子实现多样化和功能化的充要条件。本论文首先回顾了部分有代表性的含杂原子的AIE体系,介绍了其结构、性质与机理,并列举相关创新型应用。然后基于当下的研究进展,以折叠型四苯基乙烯(tetraphenylethylene,TPE)衍生物和氧化膦哚(phosphindole oxide,PIO)衍生物为研究对象,分别从空间效应和电子效应的角度出发,有目的地引入多样化的杂原子,研究其对分子的立体构型、电子结构以及光物理(与光化学)性质的影响,建立构效关系,揭示光物理(与光化学)机制,并拓展这些新型材料在光电器件和生物材料方面的功能和应用,为AIE相关的基础研究和应用开发提供了有价值的指导。具体内容包括以下两大方面:1)开发了一系列含杂原子的折叠型TPE衍生物:基于此分子骨架成功地构建了多种类型的分子内苯环-苯环或苯环-芳香(稠)杂环堆积模型,提出了一种分子轨道解构分析方法,证明了不同堆积模型对杂化共轭结构的调控作用,并系统地研究了共轭结构对光物理性质和跃迁特征的影响,对多维功能分子的认识、开发和优化具有重要意义,同时拓展了折叠型TPE衍生物潜在的应用价值。2)在氧化膦哚核心中引入具有不同推拉电子性质的杂原子取代基,开发了一系列新型PIO衍生物:首先,研究了杂原子取代基与分子的光物理性质之间的构效关系,结合理论计算建立了一套激发态“醌式转变”理论以解释PIO衍生物在溶液状态下的光物理行为,并提出了“醌式转变受限”机制以解释其AIE性质,同时开发了PIO衍生物在光电器件领域的应用潜力;其次,设计开发了一类新型的纯有机I型光敏剂,全面剖析了其中的光物理和光化学机制,从实验到理论角度提出了一套针对I型光敏剂的较为完整的研究方案;进一步地,评估了基于PIO的I型光敏剂在内质网应激介导的光动力治疗中的应用效果,探索了其生物学效应以展示其在癌症治疗中潜在的应用价值;最后,通过改变分子的亲脂性以调控阳离子PIO衍生物对细胞和细菌的侵入能力和生物毒性,筛选出一种高效的非细胞侵入型抗菌剂,同时证明了烷基链工程在小分子抗菌药物的设计开发中具有重要意义。
其他文献
无线通信技术是信息化、数字化社会的重要基础,在人们的生活、国民经济和国防应用中占据着重要地位。5G移动通信正极大地改变人们的生活方式和众多领域的商业模式,且不断推动B5G、6G等未来技术前进。大规模MIMO天线技术和多频共口径天线融合技术在5G及未来移动通信技术中占有重要地位,是应对未来移动通信系统多频段化、多制式化、多功能化、多标准化等挑战的重要技术途径。本论文开展宽带多天线融合及解耦方法研究,
氧化物锂离子固体电解质因其具有高锂离子电导率、宽电化学窗口、高热稳定性和高机械强度等优点,在下一代储能电池—固态锂金属电池中被广泛研究。使用氧化物固体电解质的固态锂金属电池有望同时兼具高能量密度和高安全性,突破使用液态电解液的锂离子电池的瓶颈问题。当前由于氧化物电解质的密度较大和自身高的刚性带来的界面问题使得使用氧化物电解质的固态锂金属电池仍存在电极/电解质固-固界面阻抗高和能量密度低这两大难题。
紫外光探测器件在光通讯、光开关和光成像等领域具有广泛的应用前景。直接带隙半导体氧化锌材料的禁带宽度为3.4 e V,室温激子束缚能为60 me V,环境友好且易于制备,有望在紫外光探测领域应用。然而,本征氧化锌载流子浓度较低、电子空穴复合速率较快等缺点限制了其光探测应用。本论文针对上述问题,设计并制备基于氧化锌复合结构,包括同质结、异质结的构建及等离子金的修饰,实现了氧化锌纳米材料紫外探测器性能的
基于人类社会碳中和的远景规划以及可持续发展目标,实现人工碳循环闭环以及使用非碳基燃料已迫在眉睫。近年来,利用太阳能、风能等可再生能源作为电源的电化学合成方法,由于其环保、简易、可控的特性得到国内外研究者的广泛关注。CO2及N2的电化学还原,不仅可减少空气中的CO2排放,同时可利用地球上最广泛的资源N2和H2O生产高附加值化学品,其已成为研究热点方向。然而,目前电化学CO2或N2还原反应(ECRR或
随着电动汽车数量的迅速增长对应的安全问题也日益突显。电动汽车碰撞事故中,锂电池在机械滥用下的变形失效是导致内部短路和热失控的因素之一。论文通过试验分析、建模仿真和理论解析三种方法,揭示了车用方形锂电池在机械挤压载荷下的力学行为和变形失效,建立了预测电池结构变形失效的力学模型,改善了对方形锂电池机械滥用下内部短路失效的认知。研究从介观和宏观尺度全面地分析了方形锂电池的机械响应特性和变形失效模式,对于
背景蛋白质在生命体进行各项生理活动中必不可少。然而,与动物蛋白质相比,植物蛋白质通常被认为具有降低健康风险的作用。此外,蛋白质的多种生理活性主要通过其释放的小肽而得以实现,例如二肽、三肽和其他寡肽仅在蛋白质消化或水解时释放。这些食源性的生物活性肽可发挥免疫调节、抗菌、抗高血压、抗癌、抗衰老和阿片类物质的生理活性,能够显著调节心血管、内分泌、消化、骨骼肌和神经系统等的功能,对人体生理健康具有重要作用
低光照条件下光子不足、信噪比低,采集到的视觉数据有低对比度、色偏、噪声等严重的质量问题,这使得图像中的信息难以被有效提取,而光照和噪声在空间上的非均匀分布使得问题更为困难,这对计算机视觉系统中的图像增强和识别算法在真实场景中的应用而言是一个巨大的挑战。主流的低光照图像增强方法基于图像的Retinex分解,这是一个病态问题,而噪声的存在进一步增加了其病态性。本文首先基于噪声和光照之间的内在联系,分别
随着可再生能源、储能、需求侧资源等分布式设备的大量接入,智能配电网源荷两侧多重不确定性对于系统安全运行有着显著影响。研究能够根据系统实时状态而动态调整决策的日内优化调度策略,对于促进可再生能源消纳、提升系统运行水平意义重大。智能配电网日内优化调度本质上是一个具有高维连续-离散状态决策空间和复杂约束的随机序贯决策问题。电力系统中常用的日内优化调度算法存在过度依赖预测信息、计算复杂和最优性难以保证等缺
可拉伸导电复合材料(Stretchable Electrically Conductive Composites,SECC)是一种由可拉伸基体和导电网络组成的、在拉伸状态下仍具有导电性质的一类复合材料,在柔性电极、柔性传感材料、柔性电路及柔性储能器件中均具有广泛的应用前景,是当前柔性电子科研领域中重要的研究方向。在实际应用中,由于可拉伸导电复合材料面临动态下的使用(如往复拉伸、弯曲和扭曲等),也不
醚键和羧酸酯键是含氧聚合物中最常见的功能基团,其存在可赋予高分子材料诸多有用的性能。例如,以聚丙交酯和聚己内酯为代表的脂肪族聚酯,因主链中大量羧酸酯键的存在而具有良好的生物降解性和力学性能;聚乙二醇(PEG;或聚环氧乙烷,PEO)因独特的(CH2CH2O)n型聚醚主链结构而获得优异的链柔顺性、水溶性和生物相容性。若聚合物结构中同时含有醚键和酯键,则有机会将二者的特点融合,获得性能更加优异而丰富的含