低共熔溶剂用于废弃钴酸锂电池中金属成分的回收和再生研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:yqhbyctu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
废弃锂离子电池含有大量的金属成分,其回收利用具有较大的经济和社会价值。目前湿法回收废弃锂离子电池主要针对正极材料的浸出和回收,而工业上的锂离子电池废料一般还含有作为集流体的铜箔、铝箔,但集流体也会部分溶解在浸出剂中,将导致浸出液成分复杂,后续分离金属困难。为解决这些问题,本文以钴酸锂-铜-铝为研究对象,以闭环回收钴酸锂为目标,开发了选择性浸出-溶剂萃取-溶胶凝胶法再生钴酸锂的工艺,为绿色高效地回收锂离子电池提供理论依据和技术参考,主要的研究内容为:(1)针对浸出剂会溶解部分集流体(如,约20%铜箔会溶解在硫酸、柠檬酸溶液中;约90%的铜粉、30%的铝粉溶解在氯化胆碱-柠檬酸低共熔溶剂中),导致后续分离困难的问题,以钴酸锂-铜混合材料为实验对象,利用聚乙二醇-柠檬酸低共熔溶剂选择性浸出其中的钴、锂,研究了浸出时间、温度、固液比、溶剂含水量对浸出效果的影响,并研究了浸出机理。结果表明,该浸出剂在优化条件下能浸出约70%的锂、钴,约2%的铜,具有较好的分离效果。(2)针对浸出液中含少量铜离子杂质的问题,以麝香草酚-癸酸疏水性低共熔溶剂萃取浸出液中的铜,并研究了萃取时间、温度、相比、水相pH等因素对萃取的影响,探讨了萃取铜的机理。结果表明,在优化的萃取条件下,该萃取剂对铜的萃取率为39%,锂的萃取率为1%,钴的萃取率为0.6%,对水相中的铜具有较好的分离效果。(3)针对废弃钴酸锂电池中金属成分回收的问题,将聚乙二醇-柠檬酸用于浸出钴酸锂电池废料,即钴酸锂-铜-铝混合材料,并通过麝香草酚-癸酸疏水性低共熔溶剂性萃取除杂,通过溶胶凝胶法在浸出液中再合成钴酸锂。优化了浸出工艺条件,建立了浸出动力学模型。并分析凝胶前驱体的热稳定性与再生粉末的微观形貌与组成。结果表明,在优化条件下,钴、锂的浸出率分别为66%、82%,铜、铝的浸出率为3%,得到的再生钴酸锂为层状结构、纯度较高。
其他文献
伴随着工业和经济的快速发展,生态文明的建设变得日益重要,化工园区中的企业分布密集,其排放的污染气体对环境造成了严重的影响。因此,监管部门需要对化工园区中的大气污染进行溯源,主要包括两类,分别为日常情况下企业大气污染物排放速率的估计和气体应急泄露时污染源的定位。近年来,移动监测系统以其灵活性强等优点,被逐渐用于化工园区大气污染监测中,其采样路径的规划成为一个重要问题。本文使用移动监测系统来解决化工园
学位
杂质指原料药中影响有效成分纯度的物质,与药物质量和临床安全性密切相关。杂质对照品是指用于杂质鉴别、定量分析、杂质控制等的化学标准物质,在杂质研究中发挥着重要作用。由于对照品纯度要求较高(一般不低于95%)且定向合成法步骤复杂、成功率低,使用制备型液相色谱技术从原料药中直接分离提取成为相对合适的方法。对于那些与主成分物化性质相似的杂质,常规色谱分离能力有限,使用循环色谱分离技术是可行的方法之一,但循
学位
现代化的工业和农业生产活动中容易产生有机污染,如焦油的炼制、有机化工生产中排放的废弃物、秸秆的焚烧和地膜的滥用等都对土壤造成了严重的多环芳烃污染。由于其具有生物积累性、环境持久性、高毒性和长距离迁移能力等特点,对人类的身体健康造成严重危害。在传统的土壤修复技术中,物理修复技术如热解吸修复,效率高,但是能耗高,对土壤的结构破坏大;化学修复技术如化学试剂氧化技术,操作简单、费用合理,但是会造成二次污染
学位
麦角固醇是真菌细胞膜的组成成分,是多种重要类固醇药物的合成前体,极具经济价值。本研究筛选到一株工业酿酒酵母菌株S1,其初始胞内麦角固醇含量为7.8mg/g DCW。以其为出发菌,利用CRISPR/Cas9基因组编辑技术,通过对麦角固醇合成代谢途径和胞内储存相关途径的改造,进一步提高麦角固醇产量。首先,过表达tHMG1(HMG-CoA还原酶1的催化区段)使胞内麦角固醇生物合成的前体鲨烯含量显著增加,
学位
基于金属氧化物半导体(MOS)的氢气(H2)传感器在氢燃料电池、H2储存、锂离子电池(LIB)的早期危险检测以及涉及H2的各个行业中具有广阔的应用前景。其中,LIB在热失控前最早产生H2,早于HCl等其他五种气体。基于金属氧化物半导体特别是SnO2的电阻型H2传感器具有高响应、低检测限和与集成电路(IC)高兼容性等优点,得到了广泛的研究。然而,半导体电阻式H2传感器在相关应用方面仍面临挑战,存在工
学位
两性离子多肽由于兼具两性离子性质和肽键的特性,而具有独特的抗非特异性蛋白质吸附性、生物相容性、生物降解性和优异的仿生性能。本文制备一系列两性离子多肽并探究其酶降解性能,并以两性离子多肽为基础,聚酰胺-胺树枝状大分子(PAMAM)为载体进行仿蛋白设计,主要包括以下两部分:(1)合成了一系列两性离子混聚多肽poly((EK)-co-((E)-K))以实现抗非特异性蛋白质吸附材料的可控酶降解。利用胰蛋白
学位
聚合物胶束是最重要的纳米递药系统之一,其纳米尺寸(几十至一百纳米左右)使其能够利用肿瘤的EPR效应在肿瘤部位蓄积。药物分子常通过键合或物理包埋方式装载到胶束内核,在血液循环过程中药物分子必须稳定负载在内核以避免药物分子释放入血液而导致系统毒性,而进入肿瘤或其细胞后药物分子从胶束中必须快速释放出来才能高效发挥药效。因此如何设计载药胶束,解决“血液中稳定、长循环”、到达肿瘤部位后“快速释放药物”发挥疗
学位
利塞膦酸钠是第三代双膦酸盐类药物,临床上主要用于变形性骨炎、绝经后妇女的骨质疏松症和糖皮质激素诱导的骨质疏松症等的治疗。目前文献所报道的利塞膦酸钠合成方法中,以3-乙酰基吡啶为起始原料,先经Willgerodt-Kindler反应合成3-吡啶硫代乙酰吗啉,然后水解、酸化得到中间体3-吡啶乙酸盐酸盐,再与亚磷酸、三氯化磷反应后水解、成盐得到利塞膦酸钠的方法具备较高的工业化价值,但是该方法仍存在一些需
学位
碱性直接甲醇燃料电池(ADMFC)是一种以甲醇为燃料,碱性介质下将化学能直接转化为电能的能量转换装置,其结构简单、能量密度高、燃料运输便捷,具有良好的应用前景。但甲醇渗透所导致的阴极催化剂性能衰退仍然是ADMFC应用的难题之一。开发高催化性能、耐甲醇毒化的非贵金属阴极催化剂对ADMFC技术发展具有重要意义。以Fe-N-C催化剂为代表的非贵金属催化剂是当前燃料电池阴极催化剂的研究热点之一。将铁源、氮
学位
细颗粒物(fine particulate matter,PM2.5)已成为影响我国大气环境质量的重要污染物。燃煤发电等通过烟道排放的飞灰是大气环境中PM2.5的主要来源之一。旋风分离器以简单、高效的优点被广泛用于烟道气的初步除尘,但其对细颗粒物的分离性能仍有待提高。双极荷电-湍流凝并技术可增大颗粒物粒径,是强化旋风分离器对细颗粒物分离能力的有效方法。近年来,PM2.5排放标准不断提高,因此双极荷
学位