整体式多孔炭的制备与空气水捕集应用

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:surfing203
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
淡水资源匮乏是目前全球面临的严重资源问题之一,水资源的缺乏威胁着人类的健康和生存,从而影响社会的发展。大气中有含量可观的水蒸汽,是一个巨大的淡水资源库,如果经过捕集加以利用,可能是解决淡水资源缺乏的一个有效解决方案。用吸附法进行空气水捕集,具有装置结构简单、能耗较低、适用范围广等优势,在实际应用中具有很大的前景,其中高性能的吸附材料的制备是核心和关键。整体式多孔炭材料具有孔结构丰富、抗压强度好、便于大批量合成以及价格相对低廉等优点,是空气水捕集具有应用潜力的吸附剂。本文围绕应用于太阳能驱动的吸附式空气水捕集的整体式多孔炭材料,通过改性调控和原位生长亲水极性位点的策略,提升其水蒸汽吸附能力。搭建了太阳能驱动的空气水捕集装置,测试了亲水多孔炭基吸附剂在其中的空气水捕集效果,并评估了该装置的能量效率。主要内容如下:(1)以间苯二酚-甲醛-己二胺的苯并噁嗪溶胶-凝胶聚合反应体系,制备了一种高强度的微孔-介孔-大孔多级孔结构整体式炭材料,比表面积可达569 m~2/g,总孔容为0.365cm~3/g,抗压强度超过10 MPa,通过孔结构和表面化学调控提升炭材料的水蒸汽吸附性能,且不影响这种整体式炭材料的抗压强度,经过调控筛选后该材料70%相对湿度下水蒸汽吸附量可达12 mmol/g。以炭材料的孔道负载无机盐,形成复合材料也可以大大提高水蒸汽吸附性能。(2)采用复合亲水强化策略,通过在甲醛-间苯二酚聚合物交联骨架中穿插引入可衍生为极性位点的金属有机框架作为炭前驱体,制备了整体式多孔炭材料,该材料比表面积可达705 m~2/g,30%相对湿度下水蒸汽吸附量可达8 mmol/g。通过调控合成过程中Cu2+和4,4′-联吡啶的添加量和热解温度,可以实现对样品孔道结构和表面亲水性的调节。除去金属铜和铜的氧化物形成的表面亲水位点和炭材料表面的含氧官能团,两部分因素共同提升了该整体式多孔炭材料的亲水性。(3)搭建空气水捕集装置,选取了几种多孔吸附材料,均可实现捕集空气中水蒸汽的效果。以两种商业多孔固体吸附剂为例,估算该装置的能量效率可达20.3%。从太阳光照射时吸附剂可达的温度和能量效率两方面考虑,得出炭材料是较为适合应用于太阳能驱动的吸附式空气水捕集中的吸附剂材料的结论。
其他文献
H2是一种可持续发展的绿色能源。选择从含氢工业气体中分离回收H2,不仅原料气来源广泛,且减排降耗。传统的变压吸附、深冷以及膜分离等H2回收技术均需要高压操作,尤其对于氢含量较低的低氢气体分离时能耗高、分离效率不佳。电化学氢泵是一种分离含氢混气的新方法,利用H2的极高电化学选择性分离,可实现常压下H2与杂质气体分离,H2纯度可达99.99%以上。常用贵金属Pt/C催化剂的催化活性高,但易发生CO中毒
学位
离子液体(Ionic liquid,IL)又被称作室温熔融盐,是一种由阴阳离子组成,在接近室温下常呈液态的离子化合物。聚离子液体(Poly(ionic liquid),PIL)是指由IL聚合而成,在每个重复单元都含有IL单体的聚合物。其阴阳离子的可设计性使得IL、PIL种类繁多,广泛应用于化工、能源、生物、医疗等诸多领域。因此,选用具有抗菌性能的PIL作为新型抑菌剂以制备抗菌敷料,是对抗细菌耐药性
学位
喷雾冷却技术应用于小型固体激光器等高功率设备时,对其操作参数优化是提高系统传热能力、提升设备运行稳定性的有效手段。然而在实际应用中,由于喷雾冷却系统传热过程影响因素众多,难以通过实验对单一因素进行控制且操作成本较高。通过数值模拟结合正交试验等方法对喷雾冷却系统传热过程进行模拟分析,可对系统装置进行优化,提高系统传热能力。本文基于某小型喷雾冷却装置研发需要,采用计算流体力学(CFD)开展模拟研究,讨
学位
石化化工行业是国民经济支柱产业,智能制造是建设制造强国的主攻方向,发展智能制造对于巩固实体经济根基、建成现代产业体系、实现新型工业化具有重要作用。本文以某厂连续催化重整装置为背景,基于装置实时数据和设计数据,运用数据驱动建模和机理建模的方法进行过程建模和优化研究,分别从全装置和重点单元两个角度对操作参数进行优化。具体研究内容及结论如下:(1)重整装置产品质量监测模型建立及应用。基于连续催化重整装置
学位
在众多类型的氢气传感器中,质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)型氢气传感器凭借对氢气的高选择性、可室温运行、低能耗等优点获得广泛研究,但传统结构的PEMFC型氢气传感器在膜电极(Membrane electrode assembly,MEA)阴极侧需要提供参比气体(空气或氧气),导致传感器结构复杂、成本较高且参比气体具有引爆的可能。
学位
为应对日益严峻的能源危机及环境污染问题,加快新能源技术的发展至关重要。近些年,氢能凭借燃烧热值高、清洁无污染、易于储存等特点得到越来越多的关注。目前,酸性质子交换膜电解水制氢技术凭借其高效性及无污染性成为最具发展前景的制氢技术之一,但该技术面临阳极使用寿命短,成本高及电能消耗大等问题。为解决上述难题,开发性能优异且成本低廉的阳极材料成为近些年研究热点。本文通过掺杂改性的方法向Ti/SnO2-Sb电
学位
肝脏被视为机体的“代谢中枢”,是体内代谢物进行物质代谢的重要器官。在受到内外界因素刺激时,肝脏发生病变,可能会发展成肝细胞癌(hepatocellular carcinoma,HCC),引起体内的代谢物发生改变,并表现在血清中。高灵敏度、高分辨率和高通量的代谢组学(metabolomics)技术应用于HCC研究,能灵敏的描绘HCC患者血清代谢物的变化情况。当前,肝细胞癌血清代谢组学研究存在方法单一
学位
煤化工、含能材料等工业领域产生的富含硝酸盐、硫酸盐的高盐工业废水排放量巨大、环境危害严重。低能耗处理高浓度复合盐水,同时实现高品质结晶回收,已经成为一个重要的研究方向。本文以典型的高浓度Na+//NO3-,SO42--H2O溶液体系为例进行探究。首先,通过对Na+//NO3-,SO42--H2O三元体系相图的分析,得到了特定配比下Na+//NO3-,SO42--H2O溶液体系蒸发结晶的适宜操作温度
学位
随着分子生物学的快速发展,蛋白质的分离和纯化在分子诊断、药物制造与输送以及生命科学等领域有重要应用。传统的蛋白质分离方法中普遍存在操作复杂、能耗大、蛋白质易变性失活等不足,无法实现微量蛋白质纯化的同时保持蛋白质活性和分子结构完整,制约了相关疾病发病机制诊断、疫苗研发以及临床治疗等研究。因此,探索具有良好生物相容性且能高通量吸附蛋白质的新型分离材料迫在眉睫。水凝胶是一类具有三维(3D)网络结构且能够
学位
心血管疾病和血管创伤被认为是世界范围内致死率最高的疾病之一,在所有的治疗方法中,血管移植是替代或绕过故障血管段的首选,但是在实际的临床应用中,血管移植具有诸多限制,组织工程血管(Tissue engineered blood vessels,TEBV)的构建为血管移植提供了新思路。近年来3D生物打印的迅速发展使得复杂结构TEBV的构建成为了可能。本文研究了两种血管支架:以脱细胞外基质(Decell
学位