特殊润湿性铜网的制备及其水处理性能的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:mainonewf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业废水和生活用水的排放以及偶然发生的海洋溢油事故都会带来严重的影响,一方面是资源的浪费和经济的损失,另一方面是水中的油类和有机污染物对人类和生物健康以及生态环境的危害。因此,开发和改进高效的材料和技术用于分离油水混合物并移除水中有机染料具有重要意义。论文以铜网为基底,围绕构筑表面微纳结构和调节表面自由能两方面,调控材料表面润湿性,制备具有特殊润湿性材料。针对多种体系油水混合物的分离和水溶性染料的降解,研究了材料的分离降解性能。通过三氯甲基硅烷(TCMS)修饰原位生长Cu(OH)2纳米针的铜网,在无氟体系中制备超疏水/超亲油铜网(SHCM)。一方面通过在铜网表面生长Cu(OH)2纳米针构筑多尺度粗糙结构,另一方面TCMS在其表面水解缩合形成相互交错的有机硅树脂纳米丝,使得SHCM表面具有优异的超疏水和自清洁性。实现了对多种不混溶油水混合物的高效分离,分离效率高于99.85%,油溶剂通量大于220 k L m-2 h-1,水穿透压为3.48 k Pa,一定程度克服了类似“trade-off”效应的现象。同时,SHCM具有突出的耐久性、机械稳定性和化学稳定性。提出了一种同步分离油水混合物和降解水溶性染料的策略。在铜网上生长CuO@Co3O4片状纳米簇制备超亲水/水下超疏油铜网(CuO@Co3O4铜网),利用Co3O4和CuO可以催化过硫酸氢钾(PMS)产生硫酸根自由基(SO4·-)的特点,在可见光照射下,CuO@Co3O4铜网活化PMS对罗丹明B和亚甲基蓝表现出优异的降解性能。另外,CuO@Co3O4铜网可以高效分离多种水包油乳液,成功同步油水分离和含有水溶性染料油水混合物降解。采用一步浸泡法,将CuO@Co3O4铜网浸入硬脂酸乙醇溶液中,制备具有优异油包水乳液分离性能的超疏水/超亲油铜网(SA/CuO@Co3O4铜网)。水滴在SA/CuO@Co3O4铜网表面的接触角高达164°,其对多种油包水乳液的分离效率均在98%以上,渗透通量保持在600 L m-2 h-1以上。同时,SA/CuO@Co3O4铜网具有良好的耐久性和化学稳定性。
其他文献
木质素是唯一含有天然芳香族环的大宗可再生生物资源。目前,木质素催化解聚已被公认为一种潜在的生产燃料和芳香类化工产品的方法。然而,现阶段木质素仍然作为一种低热值燃料使用。迫切需要有效的策略将木质素转化为高质量的燃料和高附加值的化学品。本文研究了酶解木质素在烷烃溶剂中催化转化为高质量燃料的过程。利用气相色谱-质谱联用仪(GC-MS)、配备氢火焰离子化检测器的气相色谱仪(GC-FID)和基质辅助激光解吸
学位
煤直接液化制备液体燃料是煤清洁利用的重要手段之一,然而苛刻的反应条件限制了该技术的广泛应用,提升催化剂反应活性是降低反应条件的重要方法,其中煤直接液化铁基催化剂是目前研究的重点,经研究发现催化剂硫化预处理过程对催化剂催化活性有较大影响。因此本文制备了系列硫化物催化剂旨在探究硫化预处理对催化剂的影响。本文主要内容和结果如下:以管式炉为硫化反应装置,在5%H2S/N2气氛下,借助MES、XRD、XPS
学位
木质素基生物质油中酚类化合物经加氢及加氢脱氧可制备环己酮及苯系化合物等重要化学品。在水相中进行酚类化合物加氢可从一定程度上解决生物油中含氧化合物组分复杂、难以与水分离的问题。Ni基催化剂活性高、成本低,广泛用于加氢及加氢脱氧。为提高催化剂加氢及加氢脱氧性能,本论文采用浸渍-直接还原法制备分散度较高的Ni3Ga/SiO2及Ni/WO3-ZrO2催化剂,分别考察了它们在苯甲醚气固相加氢脱氧反应制苯及苯
学位
动植物油脂经加氢脱氧可以制得的第二代生物柴油。通常加氢脱氧工艺在外部供氢条件下进行,氢在运输、贮存过程中存在安全问题。将醇或酸类水相重整制氢与脂肪酸加氢脱氧耦合的原位加氢脱氧技术可解决外部供氢存在的问题。然而,水热条件苛刻,催化剂容易因活性相颗粒烧结、活性组分流失及活性相及载体物相结构破坏而失活。因此,开发水相中性能优良的脂肪酸酯加氢脱氧催化剂具有重要理论和实际意义。首先,本论文采用柠檬酸络合法制
学位
近年来,异丁烯逐渐成为了一种重要的化工原料和有机化工中间体,并且随着下游产品的快速发展也使得其需求量显著增加。而因为原料易得和操作简单等优点,使得异丁烷直接脱氢制备异丁烯成为了现阶段最高效最有前景的脱氢技术之一。常用于烷烃直接脱氢的活性金属主要有Pt和Cr两种,由于Cr的致癌性和对环境有害性严重影响了它的应用,而Pt基催化剂因为活性高且无害而被广泛应用,但是Pt金属容易烧结和表面积碳而导致失活。针
学位
光催化技术可以有效解决能源短缺和环境污染问题,其中半导体光催化剂是研究的重点。g-C3N4由于可以吸收可见光、化学稳定性良好以及无毒等优点得到广泛的关注。然而,g-C3N4也存在光生电子-空穴对难分离、比表面积小以及可见光利用率低等缺点。构筑梯型(S-型)异质结是提高光催化活性的一种有效策略,但目前缺乏简单高效的合成方法。首先,本文采用一步合成法成功构筑缺陷工程的S-型WO3/g-C3N4异质结。
学位
CO2是化学工业排放物,也是主要的温室效应气体,同时又是一种存量丰富的潜在碳资源和氧资源。如能在温和条件下将CO2转化为具有高附加值的燃料,将为合理利用CO2提供一条有效途径,这不仅与环境保护和资源利用密切相关,而且对人类社会和国民经济的可持续发展有着重大战略意义。本文通过共沉淀-高温煅烧相结合的方法制得富含氧空位的Mg Fe2O4光催化剂材料。研究表明,氧空位的引入增强了材料对可见光的吸收性能,
学位
随着近些年对钙钛矿太阳能电池(PSCs)研究的不断深入,电池的光电转换效率(PCE)已经得到了很大提升,在高运行效率下的稳定性问题成为制约其实用化的关键。经典的空穴传输材料(HTM)2,2’,7,7’-四[N,N-二(4-甲氧基苯基)氨基]-9,9’-螺二芴(Spiro-OMe TAD)由于需要掺杂来提高迁移率,掺杂剂的强吸湿性会使空穴传输层(HTL)和钙钛矿形成腐蚀微孔,从而降低电池的环境稳定性
学位
蓝细菌是一类能够进行产氧光合作用的原核微生物,它们对维持地球的生态环境具有重要作用。近些年来,合成生物学的进步使能进行光合作用的蓝细菌成为有前途的“绿色细胞工厂”,能够可持续地生产生物燃料和生物化学物质。然而,蓝细菌遗传操作中可使用的诱导表达工具较少,对复杂调控策略研究的缺乏等问题限制了在蓝细菌中合成生物学的进一步发展。本文主要以快速生长的蓝细菌Synechococcus elongatus UT
学位
利用核酸药物干扰肿瘤细胞内基因表达,调控肿瘤细胞代谢并抑制其生长和转移,是一种极具潜力的肿瘤治疗策略。本论文构筑了一种动态DNA杂化纳米凝胶,用于si RNA精准递送,高效调控肿瘤细胞氧化还原代谢通路,与类芬顿(Fenton)反应结合,显著抑制肿瘤生长。主要研究工作归纳如下:(1)构筑了动态DNA杂化纳米凝胶。证实碲醚(TeEG2)与Mn2+的配位作用,提出并阐明了配位后Mn2+催化的类Fento
学位