过渡金属层状化合物Ba2CuO2Cu2Se2与BiNi2Se单晶生长及性质研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:rnimaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过渡金属层状化合物由于其丰富的晶体结构种类和新奇的物理性质,一直以来都是凝聚态物理及材料化学领域研究的热点。已知的铜氧化物超导体与铁基超导体都属于过渡金属层状化合物范畴。铜氧化物超导体具有层状钙钛矿结构,由Cu O2超导层与提供载流子的库电层交替堆积而成。而铁基超导体同样具有准二维层状结构,它包含了反萤石型Fe Se/Fe As层。除此之外,过渡金属层状化合物中还包含一些潜在的热电材料,如Bi Cu Se O、La Cu Se O、Bi2YO4Cu2Se2等等。因此,探索新型过渡金属层状化合物对于发现新的高温超导体,探索性能优良的热电材料及性质新奇的化合物有重要意义。在本论文中,我们对两种过渡金属层状化合物Ba2Cu O2Cu2Se2与BiNi2Se的单晶生长方法及性质进行了介绍。Ba2Cu O2Cu2Se2多晶样品曾在高温高压的条件下合成,它属于I4/mmm(No.139)空间群,具有层状结构,其中,Cu O2层与反萤石型Cu Se层沿c轴交替堆积,在两者之间穿插了Ba原子层。BiNi2Se是一种新型三元层状化合物。本论文包含以下五章:在第一章中,我们对超导理论发展做了简单的介绍,并列举了包括铜氧化物超导体、铁基超导体、含Bi S2层超导体在内的几类典型的超导材料。除此之外,还介绍了Ba2Cu O2Cu2Se2高温高压合成方法及与其结构相同的化合物。最后,对几种过渡金属化合物做了介绍。在第二章中,我们简单介绍了改进Bridgman法,并对样品的表征手段做了简要概述,包括:X射线衍射、扫描电子显微镜测试、电输运性质测量及磁化率测量。第三章介绍了Ba2Cu O2Cu2Se2的单晶生长方法、结构及物性测量。我们采用改进Bridgman法在常压下生长出了Ba2Cu O2Cu2Se2单晶样品。粉末X射线衍射测试结果与之前报道一致,通过单晶结构解析,我们发现Cu O2层中Cu原子与O原子存在空位,并且相比于高压下合成的样品,其晶胞参数更大。电阻率测试结果显示Ba2Cu O2Cu2Se2是半导体,通过对高温段拟合我们得到其能隙宽度约为139me V。磁化率随温度变化曲线表现出顺磁性。第四章介绍了BiNi2Se的单晶生长方法、结构及物性测量。我们采用改进Bridgman法生长出了BiNi2Se单晶样品。X射线衍射结果表明BiNi2Se属于Pmma(No.51)空间群,具有十分明显的层状结构。能量色散X射线谱分析测试显示在Ni原子位与Se原子位存在空位。BiNi2Se的电输运性质测量结果显示电阻率随温度变化表现出金属行为,其载流子类型为空穴型。磁化率测试结果表明BiNi2Se具有磁各向异性。在第五章中,对本论文的研究结果进行了总结,并对过渡金属层状化合物做了简单展望。
其他文献
量子计算机是解决经典计算机发展瓶颈的一种可能新范式。相对于经典比特,量子比特是量子计算的基本单元。因为不可避免的环境与系统的相互作用,以及系统本身不可避免的扰动,量子比特的退相干或系统缺陷带来的错误成为了量子计算和量子信息不得不面对的问题。如同经典纠错码一样,量子纠错码的出现就是为了应对这一问题。量子纠错的过程需要不断地探测错误,然后通过纠错操作来使系统恢复原来的正确状态,这种方式称作主动纠错。但
由于光电方面的应用,半导体纳米材料是近几十年很有潜力的研究领域。由于量子限制效应和大的表面积体积比,纳米材料具有与体材料完全不同的性质。在本论文中,我们研究了不同的半导体纳米结构,包括硫化锌(ZnS)纳米颗粒,砷化镓(GaAs)纳米线和氧化锌(ZnO)纳米带的众多应用,如场效应晶体管、光电探测器、单光子晶体管和单电子泵浦器件等。我们首先利用化学沉淀技术合成了ZnS纳米颗粒(NPs),并通过扫描电子
本文概述了目前在高温超导薄膜方面的研究状况和应用前景,特别是目前受到广泛关注的YBa2Cu3O7-δ薄膜和TlBaCaCuO薄膜。利用脉冲激光沉积装置(PLD)研究了在SrTiO3基片上YBa2Cu3O7-δ薄膜的生长机制。 根据两步法的需求,设计了一套能够在许多不同条件下完成铊化处理过程的装置。利用PLD制备了Ba2CaCu2Oy先驱膜(precursor),分析了不同的制备工艺条件对先驱
学位
超快激光可以用来产生和调控拓扑量子材料中的拓扑相变和自旋极化电流。这些光诱导产生的新奇物性源于材料中受到体系对称性保护的线性色散能带结构的简并节点。作为一种同时具有两重和三重简并节点的拓扑半金属,磷化钼(Mo P)是一类非常独特的拓扑半金属体系。我们初步探索了三重简并拓扑半金属晶体Mo P中产生自旋极化电流和奇异的光学响应。设计并搭建了以圆偏振光产生并调控光电流的实验装置。首先采用该装置成功地在拓
基于塞贝克效应或帕尔贴效应,热电器件能实现电能和热能的直接转换。该技术是一种全固态的转换形式,具有体积小、无震动、无污染等优点,在航天器电源、车载冰箱、废热回收等方面有着广阔的应用前景。特别是可集成的微型热电器件在生物传感与细胞培养、自供电物联网和可穿戴电子等领域具有重要的应用潜力。它可以实现局部热管理、温度传感和微小温度梯度下的能量收集。地源热泵,是一种利用储藏于地表浅层的地热资源(约47%的太
磁性化合物中自旋、轨道和晶格之间的相互作用会引起丰富的物性,如庞磁电阻和各向异性磁电阻等,相关研究是凝聚态物理和材料物理领域的前沿研究之一。如近年来,研究人员在层状反铁磁化合物Sr2Ir O4中发现了负磁电阻(MR~-70%)和极高的各向异性磁电阻(AMR~160%),在具有磁晶各向异性的层状磁性化合物Cr SBr中发现了自旋翻转所诱导的负磁电阻(MR~-40%),这与自旋-晶格之间的强相互作用和
强太赫兹(Terahertz,THz)源是THz科学技术发展的关键,其中大能量强场THz脉冲源在超快物态调控、新型电子加速器等领域具有重要的应用前景。超快超强激光与等离子体相互作用是近年来发展起来的一种新型的强场THz辐射产生途径。与基于加速器的强场THz辐射以及基于非线性晶体的THz源相比,基于激光与固体靶作用的渡越辐射THz源有着独特的优势。当一束相对论强度激光入射到固体靶表面,激光将在靶前通
超导材料在交通、能源、信息等领域有广阔的应用前景,目前铜基超导体是唯一能实现液氮温区应用的高温超导材料,但是大部分铜基超导体含有稀土元素、易挥发元素或有毒元素,其应用空间受到进一步限制。“铜系”铜基超导体Cu Ba2Can-1CunO2n+2+δ(简称Cu12(n-1)n)只含碱土金属和铜元素的氧化物,组分简单、经济安全且环境友好。当n=4时的Cu-1234超导体具有“铜系”中最高的超导转变温度T
近年来全球能源的短缺引起了人们对热电材料的关注。热电器件对于工业废热的回收再利用起着重要的作用,提高热电材料的能量转换效率就能在很大程度上节约能源的使用。通常热电材料的能量转换效率主要与其电导率、热导率和塞贝克系数三个参数相关。然而,材料中三个参数相互制约,限制了转换效率的进一步提高。要提高材料的热电性能进而提升能量转换效率,就需要减弱或消除材料中三个参数之间耦合。近来拓扑材料发现证明了电子和声子
化学式为AA?3B4O12的A位有序四重钙钛矿氧化物,因其A?位与B位均可容纳过渡金属离子,从而可产生多种新型磁电相互作用,导致系列新颖物理性质的出现。本文发挥高温高压实验条件在材料合成上不可替代的优势,制备了单相性良好的四重钙钛矿CaFe3Ti4O12及其B位掺杂体系LaFe3(Ti3Fe)O12,系统研究了材料体系晶体结构与物理性质,并探索了相关物理机制。主要的创新性研究内容如下:(一)利用高