自修复环氧树脂基超疏水涂层制备及其性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:cxc7783
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超疏水表面因其具有自清洁、油水分离、防冰、防雾等多种功能而受到广泛关注。然而,超疏水表面容易受到外界破坏而失去超疏水性能,这极大地限制了其在日常生活和生产中的实际应用。同时,对于自修复超疏水表面的研究存在着制备工艺复杂,成本昂贵等缺陷。本论文以具有形状记忆功能的环氧树脂为基体,二氧化硅为无机填料,采用简单喷涂的方法构筑表面粗糙结构,制备了一种可自修复的超疏水表面,利用环氧树脂的形状记忆功能,实现对其表面粗糙结构的自修复,并研究其机械稳定性,为自修复超疏水表面的设计提出了一种成本低廉,工序简单的策略。通过喷涂法制备环氧树脂/SiO2粒子复合超疏水表面。控制SiO2粒子与环氧树脂的质量比例得到一系列环氧树脂/SiO2复合涂层,对其表面形貌及浸润性进行测试表征。实验结果显示,当SiO2粒子与环氧树脂质量比例为1:1时,复合涂层的接触角为153°,达到超疏水的要求。在不同基底上喷涂制备了环氧树脂/SiO2粒子复合超疏水涂层,测试其接触角都大于150°,证明了该喷涂方法具有普适性。在环氧树脂聚合物的玻璃化转变温度Tg以上对样品表面进行自修复研究,该超疏水表面被压缩破坏-加热恢复5次后,依然具有152°的水接触角。利用该自修复超疏水表面进行自清洁展示,表面在修复后可再次恢复优异的自清洁性能。为进一步研究环氧树脂/SiO2粒子复合超疏水涂层的机械稳定性,本文采用上述环氧树脂/SiO2粒子质量比例为1:1的样品进行了胶带粘贴-剥离、砂纸磨损、沙砾冲击、水流冲击等一系列稳定性试验研究。研究发现,环氧树脂/SiO2粒子复合超疏水表面可分别经历200次胶带粘贴-剥离、180次砂纸磨损、200 g沙砾冲击、20 min水流冲击后仍具有优异的超疏水性能。将环氧树脂/SiO2粒子悬浊液喷涂在不锈钢网上,制备超疏水型不锈钢网,并进行了油水分离实验。研究发现,该油水分离网可实现对多种油水混合物的快速分离,且分离效率都达到99%以上,用该油水分离网重复分离正己烷-水混合物10次以后,分离效率仍可达到99%以上,具有优异的循环稳定性。
其他文献
近些年随着新能源汽车和便携式移动设备的广泛普及,人们对电化学储能装置的比能量提出了更高的要求。碱金属(锂、钠、钾)作为电池负极材料具有较低的氧化还原电位和较高的理论比容量,是目前研究的热点。然而,碱金属负极材料在充放电过程中枝晶生长问题严重,存在巨大安全隐患。而液态钠钾合金由于其具有金属的本质和液态的物理形态,可以从本质上消除枝晶。但是由于液态钠钾合金具有流动性,需要多孔材料进行固定,降低了其比能
学位
随着新时代基础教育教学改革的深化和学科核心素养的提出,初中物理课堂教学迎来了新的挑战。新的物理课程理念更加注重学科的育人价值,同时对学生的整合建构能力、思辨能力和创新意识等提出了新的要求。众多学者的研究表明,通过深度学习能够更好地发展学生的物理课程核心素养,而单元教学则是促进深度学习发生的载体,由此本文结合实际教学需要,以单元备课为对象,对指向深度学习的初中物理单元教学设计进行研究。本文共分为七章
学位
目前在全球范围内,重金属污染仍然是热点问题。重金属离子污染对环境产生不可逆转的危害;重金属在器官中积累,无法降解,对人的健康产生严重的影响。目前对于水样中重金属离子检测,电化学方法是一种操作方便、成本较低、且较为成熟的检测方法。丝网印刷电极是一种价格低廉、随取随用的一次性电极。开发一种能够进行现场水样检测的即用即抛便携式重金属离子传感器,具有重要的实际应用价值。本论文制备了一种含铋的丝网印刷电极,
学位
假冒伪劣产品的盛行已严重危害国民的健康和政府的形象,例如食品、钞票、文件、贵重物品等经常被非法伪造,因此亟待开发一种安全可靠又简单易行以辨别真伪的技术。在众多防伪技术中,荧光防伪技术因其成本低、识别能力强、无毒性、难以模仿等优点而被广泛使用。其中,下转换荧光材料因具有紫外激发可见发射、光谱丰富可调、化学稳定性高、结构可塑性高等特性,已被开发用于高密级荧光防伪及识别。本课题为提高荧光防伪材料的防伪密
学位
在实际应用过程中,柔性超级电容器在没有外力的作用下,无法长久的固定为特殊形状。形状记忆聚合物作为一种可以固定临时形状,又可以在特殊刺激条件下转变为原始形状的智能材料,可以满足这一需求。因此我们制备了一种具有形状记忆功能的超级电容器,以弥补传统柔性超级电容器的不足。如何抑制形状回复率的衰减以及减小形变对电化学稳定性的影响是该领域的两个问题。本文以聚乙烯醇(PVA)为初始材料,通过向PVA中引入特殊弱
学位
使用聚合物电解质的固态锂电池具有较高的安全性和能量密度,但其实际应用受制于聚合物电解质的室温离子电导率较低、力学性能差以及与电极接触不好。为了解决上述问题,本论文以聚氨酯-双三氟甲基磺酰亚胺锂(LiTFSI)电解质为研究对象,采用钛酸钠纳米棒(NTO)和微米级的玻璃纤维(GF)掺杂,并结合有机小分子丁二腈(SN)增塑,获得了具有高机械强度、高弹性、高室温离子电导率并且与电极接触紧密的聚合物复合电解
学位
近年来,得益于柔性可穿戴及可植入设备的飞速发展,先进柔性储能器件如锂电池的研发极为迫切。在众多性能需求中,小型化、轻量化、应变适应性与无害是可穿戴/植入式柔性锂离子电池研究的重中之重,设计新型柔性纤维状锂离子电池具有重要的研究意义。本文通过将海藻酸钠、Li2SO4、丙烯酰胺通过光引发聚合交联形成海藻酸钠/Li2SO4/聚丙烯酰胺(SA/Li2SO4/PAM)水凝胶电解质。研究各组分对该水凝胶力学性
学位
近年来,吉尔吉斯斯坦的汉语学习者数量迅速增加,汉语教师数量的需求不断增加。在这种情况下,吉尔吉斯国内没有适合的汉语教材,大部分都是使用从中国出版的俄语教材。教材的选择在第二语言初级教学阶段中影响深远,如果不能为学习者在这一阶段打下坚实的语言基础,会直接影响其未来对这门语言的理解与运用。而目前在第二语言教学中,尽管教材数量繁多,但质量却参差不齐,而教材质量是可以决定教学成果的重要因素。本篇文主要是对
学位
重金属铀酰离子(UO22+)超标对人体健康和环境具有不可逆转的危害,美国国家环境保护局(EPA)规定饮用水中铀的污染限度为30 ppb,因此快速精准检测和监测UO22+的工作及研究具有重要的现实意义。具有光物理/化学性能稳定、表面易于功能化修饰、成本低、无毒和良好的生物相容性等综合优势的碳点可提供良好的光学响应,选择性结合特定的分析物,从而形成现场和即时监测UO22+的光化学传感器。选用合适碳源前
学位
新型镍锌/锌-空气复合电池巧妙地结合了镍锌电池(Ni-Zn)和锌-空气电池(Zn-Air)的优点,提供高工作电压、能量密度和功率密度,被认为是一种具有实际应用前景的锌基电池。遗憾的是,此类电池的研究很少,已报道的正极材料十分有限,严重阻碍了锌复合电池的发展与应用。本文以钼酸镍(NiMoO4)为电化学活性材料,通过原位生长策略使其生长在泡沫镍(NF)上以制备一体化NiMoO4/NF正极,对其微观结构
学位