无铅锡基钙钛矿的可控制备及光伏性能研究

来源 :苏州大学 | 被引量 : 0次 | 上传用户:hudan913000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
得益于制备工艺简单且可以低温、低成本制备高质量的薄膜,钙钛矿太阳能电池自2009年问世以来,其光电转换效率从最初的3.8%增长至目前的25.2%。丰富的原材料储备以及广阔的应用前景使得整个钙钛矿领域充满活力。但同时,钙钛矿材料中所含的铅元素可能带来环境污染等问题。为解决铅毒性问题,本论文以无毒非铅锡基钙钛矿FA0.75MA0.25SnI2Br为主要研究对象,通过调控钙钛矿成膜、抑制二价锡离子(Sn2+)氧化和优化传输层能级匹配度,来达到提升电池光电转换效率的目的,并初步探讨钙钛矿室内光伏的应用。研究内容主要包括以下几个方面:(1)FASnI3锡基钙钛矿的组分工程。使用甲胺离子(MA+)部分替代甲脒离子(FA+),调节A位离子半径,提高钙钛矿结构稳定性。并使用溴离子(Br-)部分替代碘离子(I-),调节带隙钝化缺陷。此外,在湿法制备薄膜的过程中,引入DMF与DMSO共同作为前驱体溶剂,调节钙钛矿结晶速率,实现FA0.75MA0.25SnI2Br钙钛矿薄膜的可控制备。(2)使用抗氧化剂儿茶素(Catechin)保护钙钛矿光伏器件中的二价锡离子(Sn2+),使其不被氧化成四价锡离子(Sn4+),减少因Sn4+造成的自掺杂。同时,儿茶素能够与锡离子络合,调节钙钛矿结晶速率,降低钙钛矿薄膜表面粗糙度。最终器件在标准太阳光AM 1.5G(100mW/cm2)下的光电转换效率从4.96%提升至6.02%,在弱光1000勒克斯(lux)下的室内效率达到12.81%。(3)利用烟酰胺(Nicotinamide)调节PEDOT:PSS空穴传输层,形成与锡基钙钛矿更匹配的能级结构。烟酰胺调节空穴传输层的价带,降低电压损失,从而提升器件开路电压(Voc);同时,该材料降低了传输层表面的粗糙度,减少缺陷态密度并提升载流子迁移率,优化其与钙钛矿活性层下表面的接触。开路电压从0.63 V提升至0.83 V,器件在标准太阳光下的光电转换效率从4.77%提升至8.28%,在1000 lux下的室内效率达到15.60%。
其他文献
目前,有机小分子光电功能材料在发光二极管中的重要应用是作为有机发光材料和电子传输材料,其中有机发光材料是有机发光二极管(OLED)的核心,近年来在窄带隙的深红/近红外领域亟待开发;而电子传输材料在钙钛矿发光二极管(PeLED)中的应用研究十分有限,并且由于钙钛矿表面特有的卤素空位等缺陷造成的非辐射复合会在很大程度上降低器件的效率和稳定性,使得具有界面钝化缺陷作用的电子传输材料在钙钛矿发光二极管中的
学位
免疫检查点阻断疗法是近年来兴起的癌症治疗领域的明星手段,但临床响应率低和严重的免疫相关不良反应限制了其进一步发展。与传统的化疗相关毒性相比,免疫治疗相关不良反应的发作较迟但病程很长。其中,肝脏是最频繁发生免疫相关不良反应的器官之一,主要症状表现为肝炎。目前临床上治疗免疫相关不良反应的手段主要是暂停免疫检查点阻断剂的使用和应用免疫抑制剂。但是,停用免疫检查点阻断剂会影响癌症患者的抗癌疗效,全身性应用
学位
近年来,全聚合物太阳能电池由于其优异的稳定性得到科研人员的广泛关注。然而,基于全聚合物的光伏器件转换效率还存在一定的差距,需要进一步进行研究。本论文以全聚合物有机太阳能电池的器件制备为基础,主要研究了全聚合物太阳能电池的传输机理、器件表现与薄膜形貌之间的联系,聚合物材料结构对形貌以及性能的影响,主要研究内容如下:首先,我们系统深入研究了基于PCBM,非富勒烯小分子和共轭聚合物受体的有机太阳能电池的
学位
在大数据时代,神经形态计算体系得到了飞速发展,内容涉及多个学科和各种交叉领域,其在自动驾驶技术、图像识别处理、医疗诊断等各个方面都取得了广泛应用。但是,目前大部分的进展与成果还是基于传统计算机通过软件算法的设计而实现的。基于冯·诺依曼架构的传统计算机由于运算单元与存储单元相互分离的特点,在信息处理时,数据需要不停地在两个单元间进行传输,这不仅极大地限制了数据处理效率而且带来了巨大的额外能量消耗。因
学位
得益于其高能量密度和长循环稳定性,锂离子电池被广泛应用于便携电子设备及电动汽车领域,在全球储能市场中占据了重要一席。然而,伴随着可再生能源的推广,能源存储需求进一步扩大。在规模化应用面前,锂离子电池开始暴露制作成本高昂及能量密度受限的短板,发展更具安全性和经济效益的新型高性能储能装置逐渐凸显出重要性和紧迫性。其中,从降低电池成本的角度出发,可以选择与金属锂相比价格更为低廉的碱金属,例如金属钠、钾等
学位
金属卤化物钙钛矿是目前制备光电器件最有前景的材料之一,受到科研工作者的广泛关注。近年来,关于使用界面工程调控钙钛矿的研究层出不穷,钙钛矿太阳能电池和发光二极管器件的效率屡创新高。然而,关于钙钛矿各功能层界面载流子的传输、界面的电子结构、能级排列以及离子迁移等机理方面的问题却鲜少提及。因此,本文使用光电子能谱(XPS,UPS),掠射角X射线衍射(GIXRD)等技术,从界面分析的角度出发,在制备出高质
学位
以甲氨基铅卤化物(CH3NH3PbX3)为代表的有机-无机杂化钙钛矿材料由于具有直接带隙、高吸收系数、高载流子迁移率、长载流子寿命等优异的光电特性受到国内外学者的广泛关注。目前,钙钛矿光电二极管的探测率已突破1013 Jones,极具应用潜力。然而,已报道的钙钛矿光电二极管器件大多数尺寸较大(光敏面积集中在0.05~0.2 cm2),极大地限制了其在高像元密度成像阵列中的应用。此外,受限于钙钛矿材
学位
基因治疗作为一种新型的治疗方法,在治疗肿瘤等各种疾病方面都表现出广阔的应用前景。对于基因治疗,一个很重要的挑战就在于安全和高效的递送载体的构建。相比于病毒载体,非病毒载体在癌变、免疫原性、生产成本、安全性能等方面都有着显著的优势。但就递送效率而言,非病毒载体的效率相对较低。本文构建了两种不同类型的基因载体体系,不仅保障了高效的转染效率,同时也具备了较高的生物安全性。归功于纳米技术的快速发展,越来越
学位
当下显示领域正经历着日新月异的变革,以有机电致发光二极管(OLEDs)为代表的低能耗、优异视觉体验、可柔性化的新型显示技术正得以迅猛发展,已广泛地应用在可穿戴、车载、教育、医疗终端设施中,为人们提供了丰富的互动式场景体验。而当以更高色纯度、更广色域、且适于溶液法工艺策略的新型胶体量子点(CQDs)替换传统有机染料构建电致发光器件(QLEDs)时,除可显著提升屏幕的视觉感染力之外,也将进一步简化生产
学位
近年来,细胞膜仿生纳米颗粒获得了科研工作者们的广泛关注。利用细胞膜“伪装”人工合成纳米颗粒内核,使得该类仿生纳米颗粒具有源细胞固有的表面功能特性。在本篇论文中,我们构建了具有靶向性功能的细胞膜仿生纳米颗粒,并将其应用于眼部疾病的治疗。本论文的研究思路和内容分章节介绍如下:第一章:简要概述了细胞膜仿生纳米颗粒的定义和发展历程。详细介绍在疾病治疗领域,细胞膜仿生纳米颗粒的代表性研究进展。阐述了本篇论文
学位