Fe-Na协同催化煤焦气化反应特性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:LittleCam
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
催化气化技术具有反应温度低、反应过程热效率高的特点,近年来得到了广泛的研究。金属催化剂一直是催化气化研究的热点,目前所研究的金属催化剂主要包括碱金属催化剂、碱土金属催化剂和过渡金属催化剂。二元金属催化剂共同参与催化气化反应时会产生协同促进作用,表现出比单金属催化更好的性能。但有关于金属催化剂协同作用的影响因素与潜在机理还需要进一步探讨。基于此,本文选取可能具备不同催化机理的过渡金属Fe和碱金属Na作为气化反应的催化剂,来研究二者在催化气化反应中的协同作用。以Fe(NO3)3·9H2O和Na NO3为催化剂,采用微型流化床系统进行单一金属催化剂和二元金属催化剂的催化煤焦-CO2气化实验,探讨了温度、催化剂添加量等影响因素对于煤焦气化反应性、产气速率、活化能的影响,并讨论了单金属的催化特性和二元金属催化剂的协同作用。实验结果表明,温度的提高可使Fe催化煤焦气化的反应性与产气速率明显提高。随着Fe添加量的增加,煤焦气化反应性先增强后减弱,1%Fe-char的气化反应性最强2%Fe-char的气化反应性略低于1%Fe-char的,0.5%Fe-char的气化反应性最弱。Fe催化煤焦气化的活化能随添加量的增加先降低后增加。温度的提高可使Na催化煤焦气化的反应性与产气速率明显提高;随着Na添加量的增加,煤焦气化反应性先增强后减弱,9%Na-char的气化反应性最强;Na比Fe有着更好的催化效果,但Na容易失活导致反应后期活性不足;5%Na-char与7%Na-char的活化能接近,分别为335.15k J/mol、338.49k J/mol,9%Na-char、11%Na-char和13%Na-char的活化能接近而整体低于5%Na-char和7%Na-char的,分别为221.03k J/mol、244.27k J/mol、214.49k J/mol。对于Fe-Na二元催化剂体系,如果Fe处于单独催化时较佳的状态,则少量的Na比过量的Na更有利于气化反应;如果Fe处于单独催化时较差的状态,则恰恰相反。在煤焦气化反应中,0.5%Fe与3%Na、5%Na、7%Na表现为协同促进作用,与9%Na表现为协同抑制作用;1%Fe与3%Na、5%Na表现为协同促进作用,与7%Na、9%Na表现为协同抑制作用。表现为协同促进作用时,气化特性结合了Fe和Na单独催化的优点,既能在反应初期快速反应,又能维持较高催化活性。
其他文献
随着近年国际形势紧张,海上军事力量显得尤为重要,舰船因其具有强大的打击能力且不易被发现在军事战争中有着举足轻重的地位,如何快速准确的发现舰船目标是目前迫切需要解决的问题。由于舰船航行时会对海面温度和高度产生一定的影响,形成的尾迹目标不易隐藏、持续时间长且可间接暴露潜艇航行信息,所以对舰船尾迹的模拟仿真和检测识别的研究具有重要意义。本文通过数值模拟的方法根据舰船热尾流的浮升特性和Kelvin尾迹模型
学位
近年来,具有寿命长、效率高、材料制备成本低、生物相容性好和分子设计灵活等优点的纯有机室温磷光(Room-Temperature Phosphorescent,RTP)材料吸引了越来越多的关注。为了进一步延长有机磷光材料的磷光寿命和/或提高磷光量子产率,采用主-客体掺杂策略的有机-有机和有机-聚合物RTP材料也得到了迅速发展。本论文选择1,8-萘酰亚胺(1,8-Naphthalimide,NI)作为
学位
离子液体(Ionic Liquids,ILs)作为一种新型绿色材料,已成为工业应用中新型溶剂、电解质的重要候选者。ILs作为新型溶剂的主要缺点是其粘度较高,将ILs和极性相近的乙醇混合可以显著降低粘度。ILs/乙醇混合物已在催化反应、有机合成等领域显示出不同于传统溶剂的优良特性。当ILs电解质应用于超级电容器时,石墨烯作为一种具有高比表面积、高电导率和优良化学特性的新型电极材料,使ILs/石墨烯成
学位
面对当前环境压力,为了更快更好地实现“碳达峰、碳中和”的宏伟目标。针对当前清洁能源发电的需求,自主设计适合IGCC燃气轮机燃烧室的微混单喷嘴,依托微混燃烧技术以等体积比的CO和H2为燃料,利用Williams简化机理进行三维数值计算。通过研究不同的喷嘴结构在喷嘴出口处的掺混特性和掺混距离,对喷嘴的结构进行优化得出适合热态实验的喷嘴结构。随后展开热态计算,通过分析单喷嘴热态的温度和组分分布,定性和定
学位
相变储能作为一种潜热储存技术具有能量密度高、储热/供热温度恒定、循环利用等明显优势,在能量的吸收、存储和释放等领域扮演着越来越重要的角色。其中,成本低廉、腐蚀性小和性能稳定的有机-固液相变材料(SLPCMs)成为近年来使用最广泛的潜热储存材料。然而,SLPCMs在相变过程中形状不稳定,容易泄漏,限制了其在能量储存中的实际应用。为了克服这一关键问题,需要为相变材料构筑一定的支撑结构。多孔氧化铝陶瓷作
学位
造纸废渣是再生纸制作过程中产生的一类固体废弃物,目前国内对造纸废渣的处理方式主要为焚烧,虽然工艺简单有效,但是伴随燃烧会产生烟尘、二噁英等有害物质,且会影响系统运行经济性。近年来,环保部门已开始逐步限制新建造纸废渣焚烧项目,造纸行业要求探索更环保、附加值更高的造纸废渣处理技术,努力实现其资源化利用。针对上述问题,本文研究了水蒸气气化工艺处理造纸废渣。首先,使用管式炉试验台对气化反应规律进行了研究,
学位
目前,全球温室效应严峻,各国已形成碳中和的共识,中国也提出了“碳达峰、碳中和”的目标。本文综合现有的氨法捕碳与废弃物稻壳利用的技术优势,基于新型氨法捕碳过程产物NH4HCO3的综合利用和农业废弃物稻壳的快速消纳制备出高值化炭-硅产品。利用稻壳制备稻壳源生物炭材料,并结合材料的理化结构分析揭示稻壳源生物炭制备过程中的溶硅和活化机理;根据纳米白炭黑的制备实验考察该技术路线制备纳米白炭黑的可行性,并在反
学位
迄今,细菌感染仍然是人类健康的巨大威胁之一,抗生素的滥用导致超级细菌的出现,因此开发新型高效的抗菌药物迫在眉睫。与传统抗生素不同,纳米酶有良好的膜通透性和生物相容性,不太会引起细菌的耐药性。基于其丰富的表面金属原子比,几种贵金属基纳米酶(如金、银、铂和钯)显示出优异的催化活性,所以被广泛应用于生物医学领域,如生物传感、癌症检测或治疗、神经保护、去除污染物和抗菌剂中。其中,钯纳米粒子(Pd-NPs)
学位
随着多喷嘴冲击式水轮机向高水头、大容量与大比转速方向发展,新型材料的使用导致水轮机刚度降低,由高速射流与旋转诱发的结构振动与共振、水斗表面损坏和水斗整体断裂失效十分常见,影响机组的安全稳定运行。目前对冲击式水轮机转轮结构的研究主要集中在静力学分析与模态分析上,针对瞬态动力学特性的研究相对极少,且研究手段多为模型试验,因此如何在设计阶段根据机组实际运行工况有效预测结构的动力学响应、提高机组的运行稳定
学位
生物医用聚合物材料在使用过程中通常会产生难以察觉的裂纹损伤,导致材料的性能和使用寿命下降并会产生隐患。本征型自修复材料能利用结构中的动态交联键实现自修复。因可实现受损后的多次修复,该类型的修复材料受到研究者们越来越多的关注。聚合物的自修复主要依赖分子水平的物理或化学作用以及两者共同的作用来实现。在聚合单体中引入特别的功能基团(如巯基、氨基、羧基等)可以为材料提供动态的化学交联键,使聚合物具有自修复
学位