中锰钢的奥氏体调控与Cu析出行为研究

来源 :北京科技大学 | 被引量 : 0次 | 上传用户:lrq22
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了实现节能减排、减轻环境污染,以中锰钢为代表的第三代先进高强钢受到工业和学术界的广泛关注。本文主要从合金成分设计和热处理工艺出发,对含Cu-Ni中锰钢中逆相变奥氏体和纳米Cu析出进行精细调控,重点讨论了逆相变奥氏体的形核特征、合金元素配分行为以及Cu析出在铁素体-奥氏体双相组织中的演变机理,通过TRIP效应和析出强化的协同作用提高中锰钢的强度和塑性。研究发现,原奥氏体晶粒尺寸对淬火马氏体的组织特征具有显著影响。随着原奥氏体晶粒尺寸增大,淬火马氏体原奥晶界密度逐渐降低,block界面密度逐渐升高,同时原奥晶粒内包含的packet和变体数量逐渐增加。淬火马氏体组织由KAM值较低的粗大block和KAM值较高的细小block组成,随着原奥晶粒尺寸增加,粗大block和细小block的尺寸差异逐渐增大。经过临界退火处理,逆相变奥氏体均倾向于在界面处形核,即在原奥晶界、大角度和小角度packet界、block界以及sub-block界面处均可形核,但在无界面区域(变体内部)形核较少。这使得奥氏体形核表现出分布不均的情况,即粗大block区域奥氏体形核较少,细小block区域奥氏体形核较多。通过调节临界退火及回火工艺,在不同稳定性的残余奥氏体界面附近构建合金元素富集层,实现奥氏体内合金元素的非均匀分布。研究发现,第一步临界退火后,奥氏体中合金元素分布较为均匀,在退火工艺后添加回火工艺,可以在奥氏体内邻近界面处构建Mn和Ni的元素富集层,实现合金元素在奥氏体心部低、界面高的梯度分布。当退火温度较低时,残余奥氏体较为稳定,在变形过程中不发生TRIP效应,此时元素富集层对其力学性能影响较小。而当退火温度较高时,残余奥氏体呈亚稳态,在变形过程中会持续发生TRIP效应,而回火形成的合金元素富集层可以显著推迟TRIP效应的发生,极大提高残余奥氏体稳定性以及材料塑性。通过对临界退火期间Cu析出在双相组织中的演变行为进行研究,发现在升温过程中,绝大部分Cu析出都已在临界铁素体(或回火马氏体)中形成。在保温过程中,临界铁素体中的Cu析出先部分溶解,剩余析出发生粗化。关于相界面迁移和混溶间隙的计算结果表明,在保温过程中奥氏体内没有新的Cu析出形核,但部分临界铁素体中的Cu析出会随着铁素体/奥氏体界面迁移进入到逆相变奥氏体中。这部分Cu析出一旦被奥氏体包裹会立即开始溶解,但溶解动力学较为缓慢。Cu析出在两相中不同的演变行为使得680℃退火60 min后奥氏体内部的Cu析出呈现不均匀分布状态,在奥氏体界面区域Cu析出的尺寸和体积分数较大,而在心部区域则与之相反。在变形过程中,临界铁素体中的Cu带来显著的强化效果,而奥氏体中的Cu析出凭借极慢的溶解速率延缓了强度下降。
其他文献
随着金属基增材制造、热喷涂、金属注射成形、微电子封装等高新制造产业的快速发展,对优质球形金属粉体的需求也与日俱增。然而,目前几种主流的球形粉体的制备工艺仍存在一些缺陷问题,制备性能优良的球形金属粉体引起了国内外的广泛关注。我国球形金属粉体的种类、产量在近几年有了显著增长,但与国外传统优势企业差距较大,高端产品仍不能满足市场需求,尤其是增材制造领域的优质球形金属粉体原料仍依赖进口。因此,研究具有自主
学位
火法炼铅过程中产生的铅冶炼渣具有成分复杂、重金属含量高、环境危害大的特点。目前铅冶炼渣综合利用率较低,堆存量逐年攀升,已成为铅冶炼行业绿色发展的重要瓶颈之一。本论文以典型鼓风炉铅冶炼渣为研究对象,通过碳热还原挥发实现了铅冶炼渣中铁与重金属的分离与综合回收。重点研究碳热还原过程中多金属元素的相态演变规律,特别是重金属的挥发机理及动力学特性。在此基础上验证了工艺放大的可行性,为实现铅冶炼渣的资源化综合
学位
随着厚钢板越来越广泛地应用于海洋工程、桥梁工程、核电、风电、军工、高层建筑、重大技术装备制造等领域,对厚钢板性能要求也越来越高,特别是焊接性能。为了改善焊接热影响区的组织和性能,日本学者提出了氧化物冶金技术,即通过向钢中加入Ti、Ca、Mg、Zr以及RE等元素,利用这些元素形成细小弥散的高熔点氧化物质点诱导晶内针状铁素体的形核以提高焊接性能,对诸如EH36船板钢等碳当量较低的钢板效果明显。但是,对
学位
钛及钛合金性能优异,可应用于航空航天、石油化工、生物医疗等诸多领域,但受限于高昂的价格,目前仅在少数高端领域有应用。粉末冶金钛合金避免了复杂的熔炼过程,无需开坯锻造,是降低钛合金成本的有效方法。然而,粉末冶金钛合金由于氧含量难以控制、难以实现全致密,导致性能不理想,无法满足许多对强度、塑性以及疲劳性能有高要求的场合。虽然目前也提出了热等静压等一系列性能提升技术,但往往造成生产成本的大量增加,与降低
学位
产教融合背景下,高职院校应该建立多元主体教育质量评价体系,以此为社会培养高质量技术人才。基于此,文章从高职院校教育质量评价的多元主体入手,概括学校、社会、政府三大多元评价主体,再提出三大多元主体评价体系构建框架,分别阐述不同主体的评价建设情况。在全面了解相关问题基础上,提炼多元主体评价体系的建设策略,不断深化产教融合,提升高职院校人才培养质量。
期刊
硬质合金是由硬质相(如WC、TaC、TiC等)和粘结相(如Co、Ni、Fe等)经烧结后制备的合金块体材料,因其兼具高硬度、高强度、高韧性、良好的耐磨性和化学稳定性等综合性能,被认为是最重要的金属陶瓷材料之一。随着社会的不断发展,WC基硬质合金广泛地应用于各个领域,不同的应用环境也对硬质合金的性能提出了更高的要求。研究表明通过细化WC晶粒到超细甚至纳米级时,可显著提升WC-Co硬质合金的力学性能。而
学位
铝合金灰是铝加工、铝再生过程中产生的危险固体废弃物,我国铝工业每年产出铝合金灰约100万吨。目前所产生的铝合金灰一般只能采取堆存掩埋的方式处理,不仅浪费资源,更会造成环境污染,危害人类健康。铝合金灰含有大量的铝及其他有价元素,但因其物相及组成复杂,从而导致资源化利用非常困难。铝合金灰的无害化处置及资源化利用是保障我国铝工业绿色生态化的关键。当前国内外对铝合金渣中金属铝的回收技术及装备研究较多且技术
学位
金属玻璃即非晶,由于缺乏长程有序性,室温塑性变形通常由单一或有限数量的剪切带控制,会导致宏观脆性。局部化的剪切带以塑性流动形式扩展是非晶合金非均匀塑性变形最主要的特征。由于剪切断裂时,材料已经发生破坏,使得在显微原子尺度上研究塑性流动受到限制。通过向金属玻璃中引进晶态相,可制成非晶复合材料,这种复合材料既具有很高的强度,同时在断裂时表现为多重剪切带破坏,从而大大改善非晶类材料的延性和断裂韧性。但非
学位
为了适应“双碳、节能、安全”的新时代汽车轻量化发展主题,兼具高强度和高塑性的中锰钢已然成为极具竞争力的未来汽车用钢材料。然而,钢中锰元素含量过高以及热处理时间过长等问题在很大程度上限制了中锰钢的工业化生产。因此,优化合金成分体系、设计合理的工艺路线并控制亚稳态残余奥氏体的稳定性是中锰钢获得优异力学性能及实现产业化应用的关键科学问题。本文以“中低锰+V合金化”为基础,设计了 7Mn-0.5V、3.5
学位
随着我国节能减排、应对气候变化战略的实施,海洋工程、汽车等应用领域都提出了减重、降低排放的要求,低密度钢因其密度低、耐蚀性能好等优点引起了业界的重点关注。目前对于低密度钢的研究工作主要集中在不需求韧性的汽车用薄板领域,而对组织为全δ-铁素体的海洋工程用钢研究较为匮乏。本文主要针对海洋工程用全δ-铁素体低密度钢的组织调控及增韧机理进行了系统的研究和分析,提出了创新的δ-铁素体组织细化及韧化控制工艺。
学位