基于界面修饰的纳米氧化锌电子传输层在聚合物太阳能电池中的应用

来源 :常州大学 | 被引量 : 0次 | 上传用户:elongyu888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着有机太阳能电池(OSC)光伏性能日益提高,解决OSC商业化问题迫在眉睫。尽管当前已有效率超过18%的活性层材料,但传输层存在的缺陷依然是有机太阳能电池商业化的巨大障碍,如传统的空穴传输材料聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS),由于其酸性性质会直接影响到活性层材料的电荷扩散与稳定性;同时,溶胶凝胶ZnO因其高温结晶制备ZnO薄膜也与商业roll-to-roll工艺不兼容。因此,为了制造高性能大面积OSC,本研究选用了高电子迁移率、高透明度、可低温或室温加工的纳米氧化锌(ZnO NPs)作为倒置OSC的电子传输层,并对ZnO NPs进行适当修饰,为制备简单高效倒置有机太阳能电池提供一种有效的手段。本论文的研究内容主要分为以下三个部分:(1)将聚合物电解质聚(9,9-双(3’-(N,N-二甲基)-N-乙基铵-丙基-2,7-芴)-alt-2,7-(9,9-二辛基芴))二溴化物(PFN-Br)添入ZnO NPs分散液中,调节分散体系中纳米粒子的分布,从而获得更致密、更均匀、更光滑的ZnO NPs薄膜。通过对掺杂前后ZnO NPs薄膜的形貌以及导电性能的研究,深入探讨了具备不同掺杂浓度的ZnO NPs对光伏器件性能的影响。实验表明,对ZnO NPs使用PFN-Br掺杂是有效的,具有PFN-Br掺杂的有机太阳能电池其载流子提取大幅提高。(2)为了进一步制备高效的倒置有机太阳能电池,向ZnO NPs分散液中掺入N型小分子N,N’-双(N,N-二甲基丙烷-1-氧化胺)苝-3,4,9,10-四羧酸二亚胺(PDINO)。PDINO的引入不仅能够调节分散体系中纳米粒子的分布,还能大幅降低ZnO NPs的表面功函,使得界面处的电压损失得到进一步降低,与具有原始ZnO NPs薄膜器件相比,掺杂PDINO的器件效率明显提高。(3)选择绿色天然的葡聚糖(Dextran,Dex)作为功能修饰层钝化溶胶凝胶ZnO因退火结晶产生的表面缺陷来制备ZnO/Dex复合电子传输层。研究发现:ZnO/Dex复合层具备更低的表面功函,更高的电荷提取能力,具备ZnO/Dex复合薄膜的单电子器件电子迁移率是单层ZnO的2倍多,从而获得更高效的光伏器件。
其他文献
为了解决不可再生能源减少和能源需求增多的问题,寻找新型能源或者开发高效、稳定和无污染的储能装置成为了科研工作者研究的重点。此时,超级电容器凭借优异的功率密度和循环性能备受关注。为了满足人们对能源的大量需求,我们不仅要保证超级电容器的现有特性,还需改善它的能量密度。根据公式E=1/2 CV~2,我们发现可以通过增加电位窗口和增大比电容这两种方式来实现。增加电位窗口的方式是将其组装成不对称电容器,将其
学位
电解水由于其两个半反应的缓慢动力学,导致水分解不能自发进行,急需电催化剂的加入提高其反应速率和制氢效率。而钙钛矿材料由于其丰富的元素组成以及结构的多样性成为电催化领域研究的热点,但室温下的低导电率、低比表面积、较差的电化学稳定性等缺点限制了其在电催化领域的广泛应用。基于此,本论文以提高钙钛矿的电催化性能为导向,以电催化剂的高电导率、较大的电化学活性面积、较多的电化学活性位点等为切入点,通过对钙钛矿
学位
随着我国不断的走向深蓝,人们对海洋工程装备的需求越来越大,钢制结构件在海洋环境下的腐蚀与防护问题受到广泛重视。Zn-Al涂层既具有阴极隔离的作用,又具备牺牲阳极功能,是钢铁防护最有效的手段之一。冷喷涂技术因喷涂效率高、对基体热影响小、涂层致密度高等优异性能受到了广泛关注。本文围绕Zn-Al-Al2O3以及Zn-Al-Al2O3-La2O3冷喷涂层,运用SEM/EDS技术、盐雾试验、电化学试验等方法
学位
锌铁合金因具有良好的机械性能和耐蚀性能被认为是理想的代铬镀层,并广泛应用于汽车、机械、航空航天等领域。目前,锌铁合金的电沉积主要在水溶液中进行,然而水溶液中电沉积制备锌铁合金存在氢脆、工艺复杂和施镀后镀液难处理等问题,这严重影响了锌铁合金的性能。低共熔溶剂具有宽的电化学窗口、高的电导率以及良好的热稳定性等优点,并且其合成原料低廉、绿色无毒,在空气中能够稳定存在。因此,低共熔溶剂被认为是电沉积制备锌
学位
ADC12高硅铝合金具有廉价、流动性好、良好的压铸成型性能、可塑性强等特点,适用于纺织、传感器支架和航天航空等领域。但是ADC12高硅铝合金在腐蚀环境下容易被腐蚀和被磨损。因此,寻找提高ADC12高硅铝合金耐腐蚀和耐磨性的方法具有重要意义。微弧氧化技术(micro-arc oxidation,MAO)是铝合金和镁合金表面改性使用最为广泛的技术,也是国内外学者研究、开发最深入的技术。该技术绿色环保、
学位
多级次自组装是构筑生命体的基本策略,发展人工多级次自组装策略对于深入理解和准确模拟生物功能和生物过程都具有重要的意义,同时也为构建先进功能材料提供了可靠的途径。聚合物的多级自组装是聚合物经正交相互作用驱动聚合物按次序组装成初级胶束,以及结构复杂且高度精确的多级组装体的重要方法。表面化学性质各向异性的补丁胶束是能通过补丁间的定向吸引构筑有序多级组装体的重要初级胶束。多级自组装过程中,上一级别的子过程
学位
报纸
柔性聚合物由于具有透明性和柔性好、质量轻等特点,在柔性衬底中具有广阔的应用研究。但在其使用过程中一直存在易降解、耐候性差以及硬度低等问题,因此需要对柔性聚合物进行表面改性。其中等离子体表面改性由于其效果持久、环境友好而受到广泛关注。在前期研究工作发现通过碳等离子体持续作用于聚合物表面,可以改善其硬度、耐磨性,同时形成的非晶碳薄膜与基底间存在特殊结构的原位转变层。基于此,本文以柔性PET织物和柔性P
学位
为弥补贵金属电催化剂稀缺性和昂贵性的弊端以及过低的电导率和较差的稳定性和耐腐蚀性的缺陷,本学位论文的研究方向为ⅥB族电催化剂析氢材料的制备和性能研究。本文主要通过普通水热法,微波法,超声法以及微波高压超声三者协同法制备该类催化剂,通过对其进行元素掺杂,导电碳材料修饰,调控过渡金属元素比例等方法来提高该类电催化剂的电导率,增大比表面积,提高电催化水分解性能。利用X射线衍射仪、X射线光电子能谱和拉曼光
学位
钙钛矿太阳能电池(PSCs)经过这十多年的快速发展,其光电转换效率(PCE)已经达到了25.7%,与传统的硅基太阳能电池相差不大,已经满足商业化要求。但是,在商业化推进过程中,还需要克服两个关键性问题,制造成本和器件稳定性。而空穴传输层(HTL)能够优化钙钛矿界面,调节电极和钙钛矿活性层之间的能级,有效传输空穴并阻挡电子,从而在提高PSCs性能上起到关键作用。2,2’,7,7’-四[N,N-二(4
学位