用于辅助排尿的磁软体机器人设计原理与制造方法

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:veteran_eng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
膀胱活动不足(Underactive Bladder,UAB)是排尿期间出现膀胱无法有效收缩导致排尿时间延长,排空不完全等症状,并引发如急性尿潴留等严重并发症甚至死亡的泌尿系统疑难病症。UAB的直接原因是包覆膀胱的逼尿肌层收缩无力,其成因复杂多样,在老年人群体中发病率很高。临床上现行的药物或姑息治疗仅能延缓病情,如导尿管术等,而骶骨神经刺激疗法只针对特定群体。通过植入设备直接增加膀胱排尿期的收缩力的思路有望建立起普适性的UAB治疗方法。智能软材料与人体组织模量匹配,其中快速发展的磁响应软体机器人可采用体内无源设计,具有出力大,无线驱动下快速响应产生预设定动作的优势。体内通过机械施压辅助膀胱排尿的设计思路对磁响应软体机器人的工作原理、结构设计、材料选用、制造工艺、动力学以及生物安全性提出严苛要求。本文提出一种辅助排尿的磁响应机器人,即磁性软体膀胱泵(Magnetic Soft Bladder Pump,MSBP),基本工作原理为在排尿期间人为施加控制磁场激励MSBP变形,挤压膀胱增加内部压力,迫使尿液沿尿道流出,完成尿液排空。在明确膀胱生理特征与MSBP的植入技术需求的基础上,MSBP被设计为空腔结构,由硅橡胶框架和内部填充有钕铁硼颗粒的条带形的磁性复合材料组成。MSBP的空腔采用排尿阈值形态,以允许包裹在内的膀胱在储尿期内自由充盈。用于致动的磁性复合材料采用上下分布的条带设计以实现输出压力和轻量化的平衡。针对植入的体内环境,设计结构以匹配盆腔环境以及膀胱相连接的器官如输尿管、尿道。MSBP所使用软材料与生物组织模量相近,杨氏模量均处于100~1000 k Pa之间。通过对运动过程中MSBP截面变进行有限元分析,显示在MSBP的两侧以及不同材料的连接处出现应变突变。通过在对应位置嵌入网片,提升材料的韧性达到100%,而弯曲刚度不受影响。基于注塑原理制定了MSBP的制造规程,通过两套模具的先后配合使用实现MSBP的两步成型。经体外测试,MSBP在保持磁场下挤压膀胱所提升压力超过30 cm H2O的同时,至少可以承受1000次的应力循环。最终,通过在UAB模型猪体内短期植入MSBP,在14天内通过尿动力学测试与影像结合,验证在体内MSBP辅助排尿的有效性。测试结果显示MSBP成功增加UAB膀胱内压超过31.2 cm H2O,排空率超过85%。影像显示MSBP维持在工作位置,正确地挤压膀胱,且没有造成尿返流。在植入期间对猪进行血常规、血生化、尿液检查,以及在动物处死后的病理切片炎症分析,结果均显示MSBP具有良好的生物相容性。MSBP为UAB患者的普适性治疗研究提供思路与基础,同时作为模板,为未来辅助器官的软体机器人的设计与应用提供经验。
其他文献
氢气作为一种清洁且零碳的可再生能源载体,能够为应对化石类能源过度消耗所导致的全球能源危机和环境污染问题提供有效解决方案。电催化水分解技术是公认的绿色制氢最有效途径,但其较低的能量转换效率和较高的能耗成为了限制大规模化电解水制氢产业发展的关键因素。电解水过程需要引入催化剂以降低反应能垒,但目前的商业化电催化剂主要由贵金属产品组成。然而,贵金属催化剂价格昂贵且储量稀少,这限制了其在电解水制氢领域的大规
学位
光电探测器件及技术在卫星遥感、安全监测、自动驾驶等领域发挥着重要的作用。这些领域的不断发展,对光电探测器的小型化、集成化、可延展性以及宽波段响应能力提出了越来越高的要求。相比于传统三维材料,新兴的二维材料可将电子的运动局限在二维平面内,显著增强电子与电子、电子与光子间的相互作用,从而获得优异的电学与光电响应特性。特别地,基于二维材料的范德华异质结,可通过不同材料的层间耦合作用,有效克服单一材料在性
学位
随着医学科学与工程技术的交叉,面向健康监测和医疗诊断的柔性传感器正面临着前所未有的发展机遇。目前柔性传感器的制备方法主要包括真空技术和溶液法,真空技术要求高的温度,而溶液法不可避免的产生溶剂污染。探索一种低温无溶剂污染的柔性传感器制备工艺符合“绿色”电子产品发展以及医疗卫生需求。基于此,本文采用摩擦工艺在不同材料和结构(粗糙光滑表面、平面曲面结构)的衬底上制备了柔性温度、压力和应变传感器及阵列。首
学位
能源体系的低碳转型为锂离子电池的高质量发展再添动力,更推动了高性能电极材料的设计与研发。与商用无机材料相比,有机电极材料以经济环保、结构灵活、设计多样等特点受到了巨大关注。但有机材料面临电导率低、易溶解等问题,限制了电池的性能与循环寿命。高导电性的共轭配位聚合物结合了有机、无机电极材料的优势,其独特的多孔结构、丰富的氧化还原活性位点等优势使其成为具有潜力的高性能电极材料。本文设计合成了两种共轭配位
学位
有机电极材料作为新兴储能材料具有绿色环保、分子可设计、结构柔性等诸多优点。其中,醌类小分子有机电极材料由于容量高、反应动力学快、合成简单等优势成为研究的热点,但小分子在电解液中的溶解问题严重影响了此类电极材料的循环稳定性。本研究通过分子设计,利用分子间相互作用氢键和π-π相互作用,抑制醌类小分子有机电极材料的溶解,实现其高循环稳定的电池性能,具体开展了如下的研究工作:(1)针对苯醌电极材料溶解的问
学位
无线微型机器人由于其具有尺寸小和灵活度高等特点,可以在难以到达的区域执行各种任务,在生命健康领域中具有巨大的应用前景。利用微型机器人实现血管内疾病的精准诊断与治疗被誉为医疗应用皇冠上的明珠。然而,由于血管解剖结构的复杂性以及血流的动态性,对微型机器人血管内介入操作提出了诸多挑战。本论文提出了一种可用于血管介入的微型机器人的设计方法,通过赋予微型磁性纤维多重形态变形能力,同时实现微型机器人多功能性,
学位
金属锂由于具有最低的电极电位和最高的理论比容量,被认为是高能量密度储能器件发展的潜在阳极候选材料。然而,锂金属负极面临的副反应、低库伦效率和锂枝晶等问题极大地限制了其作为负极材料的实际应用。目前,针对这些问题已经制定了许多策略。其中,添加电解液添加剂是能够有效改善锂金属负极电化学性能的方法。因此,本文主要利用添加剂阳离子的静电屏蔽机制来调控锂沉积行为,从而达到抑制锂枝晶生长的目的。同时,在此基础上
学位
与两电平逆变器相比较,三电平逆变器以其输出电压波形正弦度更高、谐波特性更好等优点而得到了广泛的研究和应用。本文选取T型三电平逆变器作为研究对象,对其调制策略、共模电压抑制和中点电压平衡控制等进行了深入研究。为了降低三电平调制策略的分析复杂度,本文以小矢量顶点为中心,将三电平矢量图转换为结构简单的两电平矢量图,并根据两电平矢量的分布特点建立60°坐标系对T型三电平逆变器的空间矢量脉宽调制(SVPWM
学位
近些年,在人工智能、计算机视觉等技术的迅速发展下,包含无人车在内的移动机器人得到了充分的技术支撑。在移动机器人上部署实时定位与建图系统越来越重要,这是高智能化程度的移动机器人完成人机交互、决策规划和运动控制等任务的基础。然而,在缺少GPS、北斗等全局位置信号或信号较弱的情况下,基于单一传感器的SLAM算法受到场景纹理信息、光照条件、运动控制和传感器视角的约束,即便融合惯性传感器(Inertial
学位
显示技术正朝着高清化、柔性化的方向快速发展,并引起虚拟现实等领域的广泛关注。量子点发光二极管(QLED)被认为是最有前途的下一代显示技术之一,但要实现商业应用仍存在诸多挑战,如载流子注入不平衡、器件稳定性差等问题。本文针对QLED器件中ITO-有机空穴注入层的界面电荷注入问题,通过在界面引入致密稳定的无机NiOx薄膜,设计制备了无机-有机双空穴注入层(HILs)结构,改善器件功能层能级匹配,提高载
学位