噬菌体YopM蛋白激活细菌毒素-抗毒素系统MazEF的机制研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:wanglq2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
群体感应是细菌中普遍存在的一种信号交流机制。近年来,在芽胞杆菌噬菌体中发现存在类似群体感应系统的信号交流方式调控温和性噬菌体生命周期裂解到溶原过程的转换,此类群体感应系统被称为arbitrium信号交流系统。该系统主要包括两个成分:信号短肽Aim P和信号短肽受体Aim R。我们课题组通过转录组分析发现SPbeta噬菌体感染枯草芽胞杆菌后,产生的信号短肽能使下游区域的yop M基因表达水平上调,过表达yop M基因抑制噬菌斑的形成。进一步通过质谱筛选噬菌体YopM可能的相互作用蛋白包括宿主细菌的抗毒素Maz E和毒素Maz F。噬菌体编码的YopM蛋白如何与宿主菌的毒素-抗毒素系统发生相互作用?我的研究工作围绕这个科学问题展开,取得以下四方面结果:(1)获得纯化的噬菌体YopM蛋白(分别来源于SPbeta家族的SPbeta噬菌体和phi3T噬菌体)、枯草芽胞杆菌的毒素Maz F、抗毒素Maz E及毒素-抗毒素复合物Maz EF,通过pull-down实验与共表达实验,证明了噬菌体YopM蛋白与抗毒素Maz E存在相互作用。(2)通过分子筛实验证明当噬菌体YopM蛋白与宿主菌Maz F-Maz E复合物孵育时,能结合抗毒素Maz E,从而释放毒素Maz F。(3)建立了体外Maz F核酸酶的反应体系,Maz F蛋白可以特异性切割底物RNA,当Maz EF复合物与YopM蛋白孵育后,随着YopM蛋白量的增加,可以观察到底物被切割的现象,证明了噬菌体YopM蛋白与宿主抗毒素蛋白Maz E结合后,激活了毒素Maz F的核酸酶活性。(4)抗毒素Maz E进行丙氨酸置换突变,发现抗毒素Maz E的第61-65位氨基酸突变后,不能与YopM结合,而这个区域也是抗毒素Maz E与毒素Maz F的区域,说明噬菌体通过YopM蛋白是通过竞争性结合的方式与细菌抗毒素Maz E相互作用,导致毒素Maz F的释放和活化。综上,本研究对噬菌体YopM蛋白与宿主芽胞杆菌毒素-抗毒素复合物Maz F-Maz E的作用方式进行探索,首次证明噬菌体蛋白可以破坏细菌的毒素-抗毒素复合物,揭示了噬菌体激活宿主毒素的分子机制,为理解噬菌体感染过程奠定基础。
其他文献
非生物胁迫严重影响着植物的生长发育。其中干旱、高温和土地盐碱化是植物生长发育中面临最多的非生物胁迫。作为固着生长的生物,植物进化出精巧有序的应答机制来抵御非生物胁迫。狗牙根(Cynodon dactylon L.)作为暖季型草坪草中具有较高经济价值与生态价值的草种,广泛应用于运动场地、庭院、生态治理等各个方面。狗牙根对非生物胁迫有较好的抗性,但是如何感知并响应胁迫的分子机理研究较少,因此对其展开研
学位
野生莴苣(Lactuca serriola)是栽培莴苣(Lactuca sativa)的祖先,在莴苣的遗传改良中起着重要的作用,然而野生莴苣的散种(seed shattering)性状阻碍其种质资源的利用。莴苣在进化过程中由散种的野生莴苣进化为不散种的栽培莴苣,本研究想要通过正向遗传学的手段克隆控制莴苣散种的基因,为野生莴苣资源的利用提供理论依据。实验室前期利用Wo111×PI491245 F2散
学位
【目的】长链非编码RNA(lnc RNA)是指转录本大于200 nt但不翻译蛋白质的基因。在十几年前,lnc RNA等基因间区的非编码元件一度被认为是基因组中占据了极大区域的垃圾序列。伴随研究的不断深入,发现人类基因组高达80%的区域可以表达RNA,而这些被表达的非编码区域容易形成lnc RNA。虽然越来越多的lnc RNA被发现并被证实功能,但由于其演化速度快、序列保守性低、物种特异性高、部分l
学位
生殖发育和配子发生是物种延续的基础。卵子发生是一个多步骤的动态过程,此过程涉及错综复杂的基因表达调控。长链非编码RNA(lncRNA)在最近的研究中被证明参与并调控了多种信号通路和生物学过程。已有的研究表明,lncRNA在哺乳动物小鼠以及猪的卵子发生及精子发生过程中发挥了重要作用[1-3]。因此,系统挖掘和分析lncRNA在卵子发生中的作用对探究生殖发育的调控机制具有深远影响。鱼类卵子发生过程往往
学位
猫跳河为典型喀斯特地貌高原河流,其中下游的红枫湖水库、百花湖水库为贵阳市500多万人的重要饮用水源地,其水体质量的好坏直接影响市民的饮水安全。浮游植物作为优良高效的环境指示物种,其群落结构特征与物种多样性可以作为水库水质评估与监测重要指标。为了探究猫跳河流域浮游植物群落特征、功能群演替规律、生态位及种间联结性,本次研究于2020年11月(枯水期)、2021年3月(平水期)、2021年7月(丰水期)
学位
场地土壤中的持久性有机污染物(POPs)已引起人们的广泛关注与重视,多环芳烃(Polycyclic Aromatic Hydrocarbon,PAHs)作为持久性有机污染物中的典型有机污染物,并具有环境持久性、远距离迁移性、生物蓄积性、高毒性以及致畸、致癌、致突变的“三致”作用,对生态环境和人类健康构成严重的潜在危害。传统处理土壤中PAHs污染的方法有焚烧、淋洗、化学氧化等,它们都有各自的不足之处
学位
茶树[Camellia sinensis(L.)O.Kuntze]是一种重要的经济作物,其鲜叶中含有丰富的氨基酸。氨基酸是茶叶中重要的风味物质,系统的研究茶树氨基酸具有积极的科学意义。目前,利用茶树遗传资源开展的氨基酸关联分析和功能基因挖掘的研究较少,关于氨基酸自然变异的分子调控机制仍不明晰。本研究采用液相色谱-质谱联用技术,对9个具有代表性的茶树品种的两种组织(成熟叶和嫩叶)进行氨基酸含量分析,
学位
线粒体是呼吸作用的主要场所,除了为细胞供能外,还参与细胞中其他重要功能,这些功能主要由线粒体蛋白执行。99%的线粒体蛋白都是在细胞核内编码,然后在核糖体翻译后经线粒体膜上的蛋白质机器协同转运分选到线粒体的不同区室。这些蛋白有5条分选途径:前导肽途径(Presequence pathway)、载体蛋白途径(Carrier pathway)、β桶蛋白途径(β-barrel pathway)、α螺旋蛋白
学位
联合国粮农组织/世界卫生组织(FAO/WHO)公布的对人体毒性最强的3种重金属为铅、镉、汞,镉铅作为其中的2种,是环境中常见的化学毒物。随着铅锌、铅锰矿的大量开采、“三废”排放量的增加,土壤、水体、大气等天然资源内镉铅污染情况严峻,影响着世界各地人民的身体健康。生活中接触到的镉铅中毒往往以联合的方式存在并进入机体。肝脏是腹腔中最大的排毒器官,在调节消化和排泄功能、储存营养物质、稳态代谢、合成新物质
学位
大豆是重要的粮食经济作物,能够提供油脂和蛋白,而在大豆成长发育的过程中,种子萌发对于提高大豆产量,从而提高我国大豆产业的竞争力至关重要。mi RNA(micro RNA)是一种小的非编码RNA(non-coding RNA,nc RNA),通常为20-24个核苷酸,通过序列互补性在转录后调节基因表达。mi R156(micro RNA156)是植物中最为保守的mi RNA之一,它的靶基因通常是SP
学位