超冷简并费米气体的制备及其性质的研究

来源 :中国科学院大学(中国科学院精密测量科学与技术创新研究院) | 被引量 : 0次 | 上传用户:xiaziaipao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超冷原子气体具有体系纯净、相互作用可控、自由度丰富等特点,是研究物质量子特性的理想体系。在超冷原子物理领域中,对超冷费米气体的研究也随着实验技术的不断进步而得到蓬勃发展。特别是近几年里相继有一系列新奇宏观量子现象在实验中得到观测并被研究,其中包括BEC-BCS间的渡越、具有标度不变性的膨胀行为、物质波孤子的形成等等。在不同的体系中这些现象都有所存在,有一部分还探究到了凝聚态物理、粒子物理和原子分子物理交叉领域中的一些基本物理问题。实验中,采用Feshbach共振技术,人们可以任意地对超冷费米气体中原子间的相互作用大小进行调节,这为研究具有强相互作用的费米气体特别是其处于BEC-BCS渡越区间的性质提供了技术支持。6Li超冷原子气体还是研究强关联效应非常好的体系,这是因为实验中所使用的6Li原子的Feshbach共振宽度有300 Gauss,易于调节。另外6Li原子是费米原子,三体损失小,体系寿命长,在强相互作用区间体系稳定,这为在实验上研究强相互作用体系提供了有力的条件。本论文主要介绍了 6Li原子超冷简并费米气体实验平台的搭建工作,并在此基础上研究了强相互作用费米气体的各向异性膨胀、三体复合损失、超冷分子BEC的形成以及原子在BEC-BCS渡越区间的物理性质。论文的主要成果概括如下:第一,设计并搭建了一套用于研究6Li超冷简并费米气体的实验系统,包括真空系统、激光系统、磁场系统、成像系统、控制系统和数据采集及处理系统。实验腔中真空度达到3× 10-9 Pa,原子在单束光偶极阱中的寿命能够达到25 s。激光系统包括波长为671 nm的共振光部分和1064 nm的偶极光部分。磁场系统包括MOT磁场、补偿磁场、塞曼减速磁场和Feshbach磁场。竖直方向成像系统是由双透镜组成的,分辨率约为8 μm。控制系统是用NI公司的Pxie6738和Pxie7858R两种板卡通过Labview软件书写程序实现的。同时,也使用了 Labview软件编写了数据处理部分,主要是把CCD获取到的图像的ACSII码转换为通用的原子团尺寸和数目等常量。第二,实现了 6Li原子的磁光阱,装载了 1× 109个原子,经过压缩磁光阱后,原子数目为5×108个,温度为500 μK。为了提高光偶极阱装载效率,进行了 6Li原子的D1线亚多普勒冷却,使原子的温度降低为57μK,原子数目为3 × 108个,相空间密度达到了 6.2× 10-5,原子在交叉光偶极阱中的装载数提高了近4倍。第三,设计了 Feshbach磁场的控制电路,利用PID电路反馈场效应管的G、S端改变Feshbach线圈中的电流,使磁场大小能够在0 Gauss到1000 Gauss内扫描。扫描过程中,在大电流源的外部控制端口加入模拟信号控制电源电压输出,让场效应管工作在额定功率以下。同时利用拍频锁相技术,制备了高场的探测光。通过塞曼能级劈裂,标定了磁场大小与PID输入端参考电压的关系(线圈中的电流与采样电阻的乘积)。光交叉偶极中装载了 1.2×106个原子,偶极光功率降低到P=5.8 mW时,两组分原子总数目为7.1×104个,温度为T/TF=0.1。第四,通过控制磁场的大小调节散射长度,研究原子在不同散射长度下的各向异性膨胀,研究了三体复合过程和原子温度以及磁场大小的关系,通过直接蒸发冷却和扫描磁场的方法观察到了分子的玻色-爱因斯坦凝聚体,并研究了 BEC-BCS渡越过程。
其他文献
光与物质相互作用的研究是原子分子物理领域的一个重要研究内容,其中一个突出的例子就是电磁诱导透明(Electromagnetically induced transparency,EIT)。在 EIT 中,弱的探测光在介质中传播的光学特性会受到强的耦合光的控制。EIT是光与物质相互作用表现出来的一种非线性效应,如介质的透射性提高、色散性增强等,在慢光、激光稳频、无反转激光、原子磁力计和精密测量等众多
由于量子多体系统通常具有巨大的希尔伯特空间和复杂的相互作用,这使得针对多体问题的研究困难重重。虽然低能区域的等效理论例如费米液体和Tomonaga-Luttinger液体(TLL)理论为我们探索多体系统提供了可行办法;然而对于一维体系,费米液体理论失效,TLL理论可以解释一维系统独特的集体激发行为,却无法用以研究多体系统的量子临界区域。通过Bethe ansatz严格求解一维量子可积系统,不但能够
随着现代材料科学的迅速发展,低维量子多体系统和量子动力学已经成为当前量子物理研究的前沿领域。在低维量子多体系统的研究中,寻找精确可解的强关联量子多体模型的严格解是极有意义的,其丰富的数学结构和物理内涵在揭示强关联物理系统的临界行为等方面扮演着不可替代的角色。本文以Lieb-Liniger模型和Yang-Gaudin模型为基础,系统研究了玻色体系的热力学性质,相图,量子临界性,从严格解的角度得到Gr
低维材料由于其高比表面积和特殊的价键结构与几何结构表现出特别的物理、化学与电子性质,特别是2004年,机械剥离法制备石墨烯成功实现,引发了人们对二维(two-dimensional,2D)纳米结构的兴趣。在2D纳米结构中,2D锑结构,尤其是锑烯,以其高稳定性和宽带隙获得关注,本文分别以Cu(111)和Cu(110)面的氧化层作为衬底制备了 2D锑结构。并以Cu(111)为衬底制备2D硒化铜结构,以
在亚埃空间尺度和阿秒时间尺度下研究原子分子的复杂动力学行为,一直是原子分子光物理的前沿课题,也是人们孜孜不倦的追求。得益于超短超强激光脉冲技术的发展,近年来在研究原子分子与超快强激光相互作用中观察到一系列非线性物理现象,如阈上电离、非顺序双电离、中性里德堡原子与高次谐波产生等,对这些强场原子物理现象的理解和认识为分子超快成像、阿秒科学等新兴学科的发展奠定坚实基础。其中,原子超快电离与里德堡态激发动
超短脉冲光源的产生及电子运动的探测与操控是超快光学研究领域的前沿课题。研究人员分别对不同物态的物质与强场超快激光相互作用进行了研究。在等离子体高次谐波、气体高次谐波之后,非线性固体高次谐波也在2011年首次实验实现,并引起了同行的广泛关注。在固体高次谐波的理论研究上,已有的研究方法有很大的局限性。比如含时密度泛函理论(TDDFT)的计算量在千核量级,效率低下。求解半导体布洛赫方程(SBE)的方法计
本文主要研究了高维非齐次标量守恒律Cauchy问题的全局光滑解以及Rie-mann问题的高维非自相似激波和稀疏波解、n维非齐次Burgers方程的具有两片初值的Riemann问题的n维非自相似激波和稀疏波解的相互作用、具有三片初值的二维非齐次Burgers方程的Riemann解中波的相互作用。第3章研究了n维非齐次标量守恒律Cauchy问题的全局光滑解,它的非齐次项是关于u和t的函数,初值是有界或
随着处在中红外波段的超短超强激光脉冲技术的发展,固体高次谐波逐渐成为国内外研究的热点。中红外激光的波长范围在2-5 μm,相较于半导体的带隙,中红外波段的激光的长波长,高强度,使得激光作用于半导体时,电离过程处于隧穿机制下。固体高次谐波的研究有着十分重要的意义:其一,因为固体高次谐波动力学时间尺度是在亚飞秒或者阿秒的量级,所以具有超短的时间分辨。固体谐波含有固体内部的超快电子动力学和晶格动力学的物
当强飞秒激光脉冲与透明介质(气体、液体和固体)相互作用时,由于各种线性和非线性光学效应的共同作用,激光脉冲在传播过程中会形成一条明亮的等离子体通道。与此同时,激光脉冲在时间和空间分布上达到相对稳定,这种现象被称之为飞秒激光成丝。由于飞秒激光成丝在众多领域,如大气远程探测、激光引雷、激光加工、超短脉冲产生、超快光谱技术等,都有着重要应用价值,近三十年来飞秒激光成丝一直是热门的前沿研究课题。然而,飞秒
实现对原子和离子的长期稳定囚禁,使其与外界环境隔离开来对于精密测量物理的研究和发展具有重要意义。近几十年来,分别通过使用射频场和光场,人们已经实现了对离子和原子的长期稳定囚禁。随着离子阱和激光冷却技术的发展,基于射频场囚禁单个离子的离子光频标也得以迅速发展。然而射频场不可避免的会引入微运动,这对于离子光频标的频率测量会造成很大的误差,因此人们希望寻找一个解决此问题的普适方法。2010年,德国的T.