利用生物炭去除海水及沙砾中石油污染的研究

来源 :青岛理工大学 | 被引量 : 0次 | 上传用户:sj20091021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人们对石油及其产品需求的增加,海洋石油的开采和运输也快速增加,导致海上溢油事故频繁发生,对海洋生态环境造成很大威胁。由于海洋洋流及水动力的影响,海上溢油会向岸滩漂移并污染海岸带,因此亟需开发能高效去除海水及沙砾中石油污染的新技术。作为一种环保新材料,生物炭具有孔隙结构发达、比表面积高和吸附性强等特点,其在海岸带石油污染处理中的应用有待发掘。本论文通过模拟实验,研究了不同材料来源、热解温度和热解时间对生物炭吸油性能的影响,筛选出4种生物炭,并对其理化性质进行了表征;探讨了生物炭的表面形貌、比表面积和表面官能团对其吸油性能的影响,并对生物炭吸附海水中石油的机理进行了探讨;以生物炭为载体将石油烃降解菌固定制备出具有活性生物炭,并对固定化条件进行了优化,并利用活性生物炭去除海水中石油;研究了施加生物柴油或生物炭对沙砾中石油污染物去除的影响,利用生物柴油和生物炭/活性生物炭去除沙砾中的石油污染物,并评价其效果。通过模拟实验,主要得出以下几种结论:(1)以松木屑、玉米秸秆、玉米芯和水稻秸秆为原材料,共制得64种生物炭,通过对比其对石油的吸附性能,发现热解温度和材料来源对生物炭的吸油性能影响较大,而热解时间对其影响较小。通过不同类型生物炭的吸油性能初步筛选出4种生物炭,其对石油吸附性能从高到低的顺序为:400℃玉米秸秆生物炭(CS400-2)、500℃松木生物炭(PB500-2)、500℃玉米秸秆生物炭(CS500-2)和400℃松木生物炭(PB400-2)。(2)生物炭对海水中石油的吸附均较符合Freundlich模型,而且海水温度的增加有利于生物炭对海水中石油的吸附;热力学分析表明,生物炭对海水中石油的吸附以物理吸附为主。(3)以生物炭为载体将石油降解菌固定,制备得到活性生物炭,对固定化条件进行了优化。结果表明,摇床转速对生物炭固定微生物的效率影响最大,其次是固定时间,微生物接种量对其影响最小;得到最佳组合为:以CS400-2为载体、微生物接种量10%、在摇床转速180r/min条件下固定4h。与游离菌存在条件相比,活性生物炭对海水中石油的去除率提高了78.2%。(4)施加生物柴油有利于沙砾中石油污染物的释放,施加生物柴油时沙砾中石油的平衡释放量最高约为5.0mg/g,而未施加生物柴油的平衡释放量约为1.5mg/g,并且生物柴油的施加量越多,沙砾中石油的释放率越高。对施加生物柴油后海水中的脱氢酶活性进行检测,未施加生物柴油组和施加生物柴油组微生物的脱氢酶活性分别为0.24μg/(m L·min)和0.27μg/(m L·min),施加生物柴油会增强海水中微生物的活性,有利于沙砾中石油污染物的去除。(5)投加生物柴油和活性生物炭时,石油污染沙砾在第一天释放了约4.8mg/g的石油,对海水中微生物的脱氢酶活性为0.33μg/(m L·min);投加生物柴油和生物炭时,石油污染沙砾在第一天释放了约5.3mg/g的石油,海水中微生物的脱氢酶活性为0.28μg/(m L·min),活性生物炭可以增大沙砾中石油的释油量,而且活性生物炭可以提高海水中微生物的活性,有利于沙砾中石油污染物的去除。
其他文献
钴拥有优良的物化性质,已被广泛应用于各个行业。随着中国新能源汽车和电池行业的快速发展,我国钴的需求量和消耗量迅猛增长,中国已成为钴消耗大国。然而,我国钴资源匮乏,对
碳酸盐岩气藏储层中,通常发育着不同规模的孔、缝、洞,使得气井所控制的储层类型有显著的差异,从而影响生产动态和最终产能,继而为气田的后续开发带来困难。本文根据目标气藏
本文提出煤热解与丙烷水蒸气重整耦合工艺(CP-SRP)以提高焦油产率,并以商业Ni/Al2O3作为重整催化剂,榆林煤(YL)为煤样,对CP-SRP过程热解产物的形成规律及焦油形成机制进行研究。
21世纪既是海洋经济深入发展的世纪,也是信息化高速发展的时代,海洋经济与信息化之间的相互作用日益加深。一方面,信息化为海洋经济的发展提供了一种新的模式,其中“互联网+
本论文考虑一类含参数k的高次非线性方程的孤立波分支,它们的行波系统都有一条奇直线。我们利用定性分析理论和动力系统分支方法研究这类方程的孤立波分支。全文主要内容如下
低阶煤在中国煤炭资源总量以及煤炭消费中占重要比例。低阶煤的特点是挥发分、水分和氧气含量高,而发热量低。热解是实现低阶煤清洁高效利用的重要技术之一。由于煤本身低的H
在反渗透海水淡化系统中,旋转式能量回收装置因其结构精密、运行成本低、能量回收效率高的特点成为降低系统运行成本和能耗的关键设备。该装置基于液体压力能传递的正位移原
短纤维增强复合材料(SFRP)具有快速制造、力学性能好等优点。SFRP已成为传统材料的重要替代品,目前被广泛应用于交通运输、航空航天等工程领域。能够准确地预测短纤维增强复
高校学生不断增加、校园面积不断增大、校园专业学科实力日益增强、校园文化逐渐沉淀等等现象都证实了校园规划是一个动态发展的、不断成长的过程。高校现已经走过了“大批量
目前,气井积液已经成为气藏开发过程一个常见的问题。如何有效预防气井产生积液,或者在积液后及时采取排液措施恢复其产能,这对于气藏的开发有着重要的意义。常用的携液模型