论文部分内容阅读
红外弱小目标检测与跟踪是红外导引领域中的一项关键技术,在红外隐身空间飞行器探测、小天体探测、导弹制导和战场侦察等航空航天领域的研究中具有重要地位。本文围绕远距离探测红外弱小目标的技术需求,重点研究了复杂背景下红外图像的弱小目标检测和轨迹跟踪问题,本文的主要工作和研究成果包括:首先,描述了红外图像的模型构建方法,针对红外图像的目标辐射特性、背景特性和噪声特性进行了细致的分析,介绍了弱小目标检测的性能评价指标,总结了红外弱小目标的检测难点。此外,介绍了三种基于人类视觉特性的弱小目标检测算法,作为本文研究工作的对比方法,验证所提算法的科学性和有效性。对于复杂环境下单帧红外图像中信杂比低于3的弱目标,使用手工特征提取的算法容易出现虚警,而拥有强大特征提取能力的深度学习算法无法对微小且缺乏轮廓信息的目标训练。因此,本文采用滑动窗口取样训练,它源自基于人类视觉特性传统算法中嵌套结构的思想,设计了使用递归卷积层的全卷积网络。在不增加训练参数条件下,该网络不仅扩展了网络深度,并且其并行卷积结构的多个分支结构还能模拟传统算法的多尺度操作。此外,本文还设计了多种损失函数来对抗正负样本严重不平衡的问题。实验结果表明,该算法能够取得比传统算法更好的检测效果。对于单帧图像中不足12个像素的小目标,链式结构在网络加深时会出现目标信息丢失的问题,而拥有信息融合和监督机制的编码器-解码器则能够改善这一缺陷。因此,本文在此基础上设计了全卷积递归网络。通过借鉴编码器-解码器特征融合的特点,该算法采用了全卷积网络中的滑窗取样训练,并且使用了密集连接操作、递归卷积操作和并行卷积操作。实验表明,在同一虚警率情况下,该方法的目标检测率总是最高的,证明本文提出的全卷积网络相较于传统方法具有更优的检测效果。最后,对于图像序列中不足6个像素的运动目标,本文提出了一种由3D卷积核和卷积长短时记忆层构建的模型,其中长短时记忆层门控单元中的全连接操作被改为卷积操作。针对该模型噪声残留较多的问题,该算法创造性地引入了注意力机制。3D卷积核提取连续15帧图像的短期时空信息;卷积长短时记忆层提取序列的长期时空信息;注意力机制则舍弃背景信息并关注目标信息。实验表明,基于输出门注意力卷积长短时记忆网络在均方根误差和平均绝对误差上相对于其他方法分别平均降低了31.0%、39.5%,在峰值信噪比和结构相似度指标上则分别平均提高了18.7%、3.1%,表明该方法背景杂波残留最少,检测效果最优。