基于木质素/纳米纤维素复合薄膜的摩擦纳米发电机的构建及性能研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:cygggg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
摩擦纳米发电机(TENG)是一种能量收集装置,可将环境和人体产生的机械能转化为可供应用的电能,在可穿戴电子设备、植入式电子器件等领域应用潜力巨大,但是传统摩擦纳米发电机主要由金属和聚合物材料制成,存在生物相容性差、难降解等问题。纤维素具有良好的成膜性和力学性能,但结构中存在大量羟基,以其作为正极材料的摩擦纳米发电机的输出性能偏低。木质素结构中含有大量烷烃,具有比纤维素更优异的摩擦正电性。但木质素成膜性较差,难以直接应用于摩擦纳米发电机中。因此,本文结合木质素与纤维素的优势,制备木质素/纳米纤维素复合薄膜并应用于正极摩擦层。进一步通过对木质素进行季铵化改性和氧化改性,分别增强木质素的给/吸电子能力,从而增强相应复合薄膜的摩擦正电性和负电性,制备了全生物质基摩擦纳米发电机。具体研究内容入下:利用工业碱木质素(AL)和纳米纤维素(CNF)制备木质素/纳米纤维素复合薄膜(AC),将其与聚四氟乙烯(PTFE)组装成摩擦纳米发电机(AC-PTFE TENG),通过调控AL和CNF的比例,探究了AL掺量对TENG输出电性能的影响。实验结果显示,与纯CNF薄膜相比,AC薄膜的摩擦正电性有明显提升。随着AL含量增加,输出电压持续增大。当AL在AC中含量增加至60 wt%时,AC-PTFE TENG的摩擦发电性能最优,其输出电压达到81.4 V,最高功率密度可达4.85 m W/m~2,与CNF-PTFE TENG相比提升近50%。将制备的AC-PTFE TENG单元组装成检测阵列放置在鞋垫底部,可以成功监测人体的运动状态,有望用于走路姿势矫正等领域。进一步使用醚化反应和芬顿氧化反应制备季铵化木质素(QAL)和氧化木质素(OAL),分别增强木质素给/吸电子能力。将改性后的木质素与CNF混合制备季铵化改性木质素/纳米纤维素薄膜(QC)和季铵化改性木质素/纳米纤维素薄膜(OC),分别将其作为摩擦纳米发电机的正极摩擦层材料和负极摩擦层材料,实现了全生物质制备摩擦层材料的目标。摩擦发电性能测试表明,QC比AC摩擦正电性更强,而OC则具有较好的摩擦负电性。由QC和OC复合薄膜组装成TENG产生的输出电压和最大功率密度分别达到230.2 m V和10.15μW/m~2。进一步,利用制备的TENG组装成自供电质量响应传感器,实时监测行驶中车辆的负载情况。
其他文献
近年来,随着可持续发展理念的深入,生态环保型道路建设也得到了极大的发展。开级配沥青磨耗层(OGFC)作为一种典型的绿色生态型路面,具有良好的排水降噪性能,被广泛应用于各类道路中。但是,由于OGFC路面内部有大量孔隙结构,在具备良好生态功能的同时,存在其材料结构强度不足,耐久性差等问题,因此在配合比设计后,要对设计沥青用量进行飞散试验,确定最少沥青用量,保证路面性能。但是,现阶段的飞散试验方法本质上
中国建筑业具有高能耗、高排放的特征,是中国开展节能减排工作的重点关注行业。广东省作为国内的经济大省,其建筑业能耗位居全国前列,建筑业节能减排亟待推进。对建筑业碳排放进行测算和影响因素分析有利于了解行业碳排放现状并制定减排措施,但现有研究针对建筑业碳排放测算未形成统一标准,缺少影响因素指标筛选环节,且缺少对减排措施的定量分析。因此,本研究对建筑业碳排放测算、影响因素分析及减排措施进行深入研究,为建筑
随着经济的发展,不断增长的汽车保有量及区域间的出行需求给高速公路交通带来了巨大的压力。为解决高速公路交通供需矛盾,在加快高速公路基础设施建设的同时,利用智能交通系统对高速公路交通状态实施全面地监控和预警,以提升高速公路的管理运营水平和服务水平,具有突出的重要性和必要性。交通量和行程时间是智能交通系统的重要参数,在实际的应用场景中,智能交通系统必须达到能够对路网的交通状态变化做出实时响应的要求,因此
超高分子量聚乙烯(UHMWPE)具有优异的抗冲击性能、耐磨损性能等,被广泛应用于多个领域。但UHMWPE极高的分子量及柔性的长链结构,使其极易形成分子链缠结,导致熔体黏度高,流动性差,加工极其困难,尤其是对于UHMWPE纤维、薄膜等制品的加工成型。之前的研究表明,拉伸流场具有诱导柔性分子链沿着熔体流动方向发生定向排列的作用,使得分子间的缠结点减少,分子链运动能垒下降,聚合物熔体黏度降低。因此研究U
作为一项可以增强人体行走能力的设备,步行助力器的辅助作用可以降低人体肌肉对于身体能量的消耗,延长步行的时间。但是,目前下肢步行助力器的研究存着一些缺陷:一方面,刚性步行助力器因为设备自身重量较大,能量利用率比较低;另一方面,柔性步行助力器主要的研究重点在通过改进结构、控制等方式实现降低人体代谢消耗的指标,没有太多关注辅助效率的话题。然而,利用更少的电池能量减少人体更多的代谢消耗,对于这类研究和产品
东莞水乡地区位于东莞市西北部,由于其独特的区位条件和自然基底,在经济高速增长、城镇化快速发展的广深经济走廊中,迄今依然呈现出以乡村为主体的城乡混杂状态。近十年来,该地区多次编制多种类型的规划,包括城市规划、村庄规划、城市设计,试图从不同角度思考该地区的发展路径,但多轮规划实施结果并不理想。经过近四十年的快速城镇化,珠三角地区的城乡关系发生了重大变化,而类似于东莞水乡这种位处城市群核心区域,但在功能
随着现代城市绿波协调控制技术的应用越来越广泛,传统基于固定绿波车速的信号协调控制方案设计逐渐难以满足实际的通行需求,因此随着车速检测、诱导与控制技术的发展,需要更加有效的车辆速度与交叉口信号配时协调优化方法来满足城市交通发展的要求。在进行信号协调方案设计时,固定的绿波车速不仅无法实时匹配实际交通状态,而且限制了道路的通行效率,还约束了区域绿波协调控制的优化空间,因此对绿波设计车速的研究将成为智能化
在船闸扩建工程施工过程中,该项目的基坑开挖工程会对现有结构体产生一定程度的影响。本研究以数值模拟为主要研究方法,分析了影响双排地下连续墙支护结构变形和应力特性以及相邻船闸室变形的几个主要因素。用MIDAS GTS NX数值模拟方法建立了新建船闸深基坑支护结构的有限元模型,并通过与施工和测量单位提供的工程监测数据进行比较,验证了计算模型的有效性。在完成构建模型的基础上,通过一系列数值模拟计算和分析,
学位
“即停即走”路段典型场景如学校门前、医院门前等因其特殊的功能定位,在道路交通体系中有着特定的存在必要性。然而在现实中,此类路段往往由于交通秩序混乱,极易产生拥堵,且拥堵一般会自瓶颈路段产生而逐渐向上游蔓延,导致整条路段交通通行效率下降,甚至导致区域交通网络瘫痪。当前对该类路段主要采取交通治理的方式,但由于不同程度地破坏了原有功能,往往给用户带来不便,迫切需要寻找一种能保证功能的更有效的缓堵策略,车
随着我国对燃煤电厂氮氧化物排放的控制要求日益提高,选择性催化还原(Selective Catalytic Reduction,SCR)烟气脱硝技术已成为国内燃煤电厂的主要选择。针对已运行的SCR脱硝系统存在氨逃逸过量和反应器出口NOx浓度偏差大等问题,本文开展燃煤电厂SCR脱硝系统分区喷氨优化模拟研究。利用数值模拟分析与性能试验相结合的方法分析流场和浓度场分布,模拟计算分区优化喷氨量;可根据多点测