聚多巴胺改性碳基催化电极及其过氧化氢合成性能

来源 :天津大学 | 被引量 : 0次 | 上传用户:soul566
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过氧化氢(H2O2),一种环境友好型的强氧化剂,其应用范围覆盖了从污水处理,工业漂白到化学合成和医疗消毒的各行业,其市场需求也使得过氧化氢的合成受到了广泛的关注。传统的过氧化氢合成方式为蒽醌法,但该方法有着能耗高,污染大,生产出的高浓度过氧化氢运输危险等问题。而电化学氧阴极还原合成过氧化氢作为一种理想的替代方法,有着无污染,原子利用率高,可现场合成等优点,因此引起了国内外研究学者的广泛关注。但是该方法仍需一种高效的活性催化电极来催化氧气还原合成过氧化氢来解决其效率低的问题。本文以一些常见碳材料为基体进行了改性处理制备出了具有良好的导电性以及催化活性的聚多巴胺改性活性电极,并将其作为电化学氧阴极还原合成过氧化氢的高活性阴极电极材料。同时利用各种实验仪器对制备出的多巴胺活性电极进行测试分析,并且利用紫外分光光度计对合成的过氧化氢进行定性及定量的分析。论文主要包括以下几点:(1)以石墨棒(GR)为电极基体材料,通过多巴胺(DA)空气氧化形成聚多巴胺(p DA)的特点,与还原氧化石墨烯(r GO)制备了PGGR电极。PGGR阴极的过氧化氢产量达到155 mg/L。表征分析后发现PGGR阴极中引入了氧基团和离子化仲胺(-NH+-)在电化学氧阴极还原过氧化氢合成中起重要作用。在反应过程中,p DA/r GO改性石墨电极中的氮在电场的作用下从-NH2,-NH-和=N-转变为-NH+-促进过氧化氢形成。(2)以石墨毡(CF)为电极基体材料,通过多巴胺水热过程制备了ht-p DA/ACF电极。ht-p DA/ACF电极过氧化氢产量达到220 mg/L。经过表征分析后发现ht-p DA/ACF阴极中过氧化氢合成的活性位点是吲哚结构。电解过程中吲哚结构的环裂解形成自由基并进一步合成过氧化氢。而且与膜形态相比,ht-p DA电极的球形形态可以扩大比表面积并暴露更多的活性位点。(3)以石墨毡为电极基体材料,通过水热法制备了Ni-p DA改性碳毡电极。Ni-p DA/ACF阴极的过氧化氢产量达到了381 mg/L。表征发现多巴胺在水热过程中能够还原Ni盐并聚合成多巴胺。通过调控多巴胺与Ni的比例,Ni-p DA/ACF阴极能够同时拥有Ni的良好活性和p DA的2电子氧还原反应选择性。同时形成的金属-聚合物颗粒能够提高碳毡比表面积,最终达到良好的过氧化氢产量。
其他文献
锂/钾金属被认为是下一代有希望的高能量密度电池负极,然而在电池循环过程中,锂/钾金属负极存在严重的枝晶生长以及大的体积变化,导致电池库伦效率低、循环寿命短。引入具有亲锂/钾性的三维多孔碳基集流体是缓解以上问题的有效措施,然而这类碳基集流体通常制备过程复杂,而且缺乏柔性。本论文通过简单的静电纺丝和热处理,制备了集优异柔性、多孔、亲锂/钾性于一体的三维碳基集流体,研究了其在锂/钾金属负极中的应用。主要
学位
316H不锈钢是在316系列钢的基础上针对更高服役温度需求而开发出的一种新型、具有更高含碳量的奥氏体不锈钢,作为第四代核反应堆结构部件的候选材料。核反应堆机组在服役过程中,由于机组频繁的功率变动和启停过程带来的温度波动,会使得核电机组中的部分结构部件处于长时间的低周疲劳行为中,容易造成材料的疲劳行为失效。因此研究316H钢在高温下的低周疲劳行为及微观组织演变过程,有利于316H钢的性能了解和应用,
学位
为抑制飞机、高铁等物体表面的覆冰问题,可利用疏冰原理构建防覆冰涂层。聚硅氧烷材料表面能低,与冰的粘附强度小,是制备防覆冰涂层的重要原料之一,但其力学性能以及环境耐受性较差,引入物理化学性能稳定、具备自修复能力的聚脲,弥补聚硅氧烷的缺陷。本文利用聚硅氧烷与二异氰酸酯合成聚二甲基硅氧烷聚脲预聚物(PDMSPU),分别添加惰性硅油、1,3,5-三(4-氨基苯氧基)苯(TAPOB)交联剂以及Si O2纳米
学位
具有强近红外(NIR)吸收的窄带隙共轭聚合物在光电、传感、通讯及医疗领域具有广阔的应用前景,然而受限于受体单元的发展,广泛用于构筑窄带隙共轭聚合物的给体-受体(D-A)策略难以实现聚合物在近红外二区(NIR-Ⅱ)的强吸收。研究表明,提高聚合物骨架的醌式特征是另一种降低聚合物带隙的有效策略。基于此,本论文设计合成了以噻吩取代吡咯并吡咯二酮(DPP)为核、吲哚酮及其衍生物为端基的缺电子醌式单元,并以此
学位
雾的形成会降低透明材料的清晰度,制备亲水性防雾涂层是常用的防雾手段,以聚乙烯醇(PVA)为原料制备的亲水性涂层在防雾方面有良好的应用,但仍存在涂层低温结霜等问题。PVA因其具有冰重结晶抑制活性,有研究表明,PVA水凝胶体系中添加海藻糖(Tre)可以增强其水合作用,且海藻糖具有良好的抗冻性能。本文制备了Tre接枝改性PVA,以提高PVA涂层防霜性能,同时应用到红细胞的冷冻保存。通过接枝聚合反应制备了
学位
近年来锂离子电池安全事故频发,使其在大型储能领域的应用受到了限制。为了解决这一问题,水系锌离子电池作为一种理想的绿色电池体系成为了研究的热门领域。本论文以具有大间距层状结构的V2O5为研究对象,对其进行部分氮化和阳离子掺杂,改善了V2O5自身导电性差以及锌离子存储困难的问题,最大程度提升其电化学性能。文中系统地研究了材料的微观形貌,物相组成,以及作为水系锌离子电池正极材料的电化学性能。首先通过水热
学位
随着人们对于环境可持续发展的日益重视,利用生物基来源、可堆肥降解的高分子材料替代部分不可降解高分子材料成为科学家们研究的一个主要热点。作为一种典型的生物来源的环境友好型高分子材料,聚乳酸(PLA)材料具有很多的优良特性,包括良好的生物相容性、高强度、高模量以及优异的光学透明性。但由于其玻璃化转变温度较高,耐冲击强度低、柔性和弹性差、脆性较大,使PLA的应用领域受到很大限制,因而要对PLA材料进行增
学位
以锂和钾为代表的碱金属负极由于具有极高的理论比容量(Li:3860 m Ah g-1,K:685 m Ah g-1),极低的氧化还原电位,有望替代目前商业电池中低容量的石墨负极,具有非常可观的发展前景。然而,在充放电过程中,碱金属负极表面不均匀的离子流容易引起金属不均匀沉积,造成不可控的枝晶生长,使电池产生安全隐患。为了解决这些问题,实现碱金属负极在高比容量电池中的实际应用,重点在于调控金属离子的
学位
在脑肿瘤治疗中,血脑屏障(BBB),血脑肿瘤屏障(BBTB)的存在以及化疗药物引起的组织毒性仍然对有效治疗神经胶质瘤的生物相容性药物递送系统提出了极大的挑战。PAMAM树状分子是高度支化的大分子,被视为球状蛋白质的合成生物模拟物,具有可控制的纳米尺寸,单分散性和较大的疏水性内腔,可用于封装疏水性药物,尤其是具有可定制的表面基团和功能。其独特的结构特征使其成为负载疏水性药物和结合靶向分子的理想药物载
学位
糖尿病会造成活性氧(ROS)在心脏部位更严重的聚集,导致更为严重的炎症微环境环境,因而糖尿病患者的心肌梗死治疗对生物材料设计提出了更高的挑战。大量研究表明可注射水凝胶有希望成为治疗心肌梗死的一种新型材料,但是目前还未有针对于糖尿病患者心肌梗死的可注射水凝胶。因此,本文建立了一种可以逆转受损的糖尿病心肌微环境的多功能可注射水凝胶体系。首先,合成了超支化的聚(β氨基酯)(PAE-PBA),其富含丙烯酸
学位