不同来流条件下双自由度旋转圆柱涡致振动特性研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:johnsontai1230
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钝体结构的涡致振动是自然界和许多工程领域中普遍存在的现象。结构涡致振动是流体机械及动力工程设备中与安全相关的重要问题。钝体的旋转是最简单的涡致振动控制方法之一。圆柱作为海洋工程中最为常见的钝体结构,圆柱的旋转可以增强或是抑制圆柱的振动响应,因此旋转可应用于涡致振动能量收集以及振动控制。在海洋工程和深海钻探等工程领域中,暴露于海水冲刷之下的细长旋转结构可以观察到旋转圆柱的双自由度涡致振动。本文综合考虑均匀来流、线性剪切流、拟合洋流和抛物线来流四种来流条件。在折减速度为3.0≤U*≤14的范围内,对双自由度旋转圆柱的涡致振动响应进行数值研究。直径为D的刚性圆柱绕其轴逆时针旋转,旋转速率的范围为0≤α≤1.5。在来流作用下,旋转圆柱可以在顺流方向和横流方向自由振动。通过数值研究得到了旋转圆柱的振幅响应、频率响应、偏移量和升阻力系数,并捕获了旋转圆柱的X-Y运动轨迹和尾迹结构。总结了不同来流条件下旋转圆柱的旋涡脱落模式。本文分析了来流条件、旋转速率和折减速度等参数对旋转圆柱的幅频响应、受力特性、运动轨迹以及尾迹结构和涡脱模式的影响规律。对于均匀来流,旋转圆柱顺流方向和横流方向的最大振幅分别为0.363D和0.611D。对于线性剪切流,顺流方向和横流方向的最大振幅分别为0.414D和0.820D。对于拟合洋流,顺流方向和横流方向的最大振幅分别为0.409D和0.738D。对于抛物线来流,顺流方向和横流方向的最大振幅分别为0.419D和0.738D。旋转增强了圆柱顺流方向的振幅,抑制了横流方向的振幅。对于非旋转圆柱,均匀来流、拟合洋流和抛物线来流的运动轨迹呈现对称的“8”字形,剪切流作用下可以观察到“水滴”形运动轨迹;对于旋转圆柱,四种来流条件下的运动轨迹都呈现单一闭环的椭圆形。“8”字形的运动轨迹表明圆柱顺流方向的振动频率是横流方向振动频率的两倍;水滴形和椭圆形这类单一闭环的运动轨迹表明圆柱的振动频率在顺流方向和横流方向始终保持一致。旋转产生的马格努斯效应使圆柱的平衡位置由初始位置向下偏移。圆柱的旋转可以拉伸从圆柱表面脱落的旋涡,这种现象在高转速的情况下更为明显。旋转引起的马格努斯效应导致逆时针和顺时针旋涡强度的不对称以及尾迹结构的向上偏移。作用在圆柱上的流体力与圆柱表面剪切层的分离和尾涡脱落密切相关,在旋转圆柱的双自由度涡致振动中观察到了2S、S+P、P+S、2P、P+T和U型六种旋涡脱落模式,以及2S*、S+P*和P*+S三种尾涡过渡模态。
其他文献
电动汽车因为节能环保和能量转化效率高等特性在近年来发展迅速。在低温下,作为动力来源的锂离子电池的放电功率和容量等性能严重衰减。且锂离子电池在低温下进行充电时,电池电量常常无法充满甚至在负极上出现锂沉积和锂枝晶。如果锂枝晶继续生长到一定程度,将会导致电池内部短路,发生危险。这些问题都严重影响着电动汽车在北方极寒地区的发展和普及。因此,如何在低温下对锂离子电池进行可靠、高效、安全地低温加热显得尤为重要
学位
随着社会的快速发展,人类大量消耗化石能源,极大增加了大气中CO2浓度,进而导致全球变暖等环境问题,因此亟需开发出一种高效利用CO2的策略。电化学还原CO2(Electrochemical CO2 reduction,ECR)具有反应条件温和、目标产物可调的优点,而且ECR技术可以与可再生电能相结合,将CO2还原为可再生燃料的同时利用弃风弃电等不稳定可再生电能,是最有前途的CO2利用策略之一。但电化
学位
能源的利用推动了现代社会高速发展,化石燃料仍是我国能源最主要的来源方式。燃煤热力发电厂在参与电网深度调峰时,其锅炉尾部烟气温度变化范围广,而现有脱硝催化剂适用温度范围窄,不能应用于具有交变宽温区特点的宽负荷电站烟气与工业锅炉/窑炉。为适应交变宽温区烟气的高效稳定脱硝,本文提出一种自加热板式催化剂的脱硝方法。当烟气温度高于300 oC时,进行常规的SCR脱硝反应,无需启用加热单元;当烟气温度低于30
学位
建筑能耗已成为世界能耗三大“巨头”之一,对室内热环境和热舒适性的准确预测是在不影响室内热舒适性的条件下实现建筑节能的重要前提,但当前大部分学者都致力于增强太阳能Trombe墙性能的研究,而忽略了对带有太阳能Trombe墙的建筑室内热舒适性的研究。所以为了填补关于太阳能Trombe墙对室内热舒适性影响研究的不足,本文首先基于能量平衡原理提出了一个带有太阳能Trombe墙的房间室内热舒适性综合评价模型
学位
随着垃圾焚烧发电的不断发展,烟气脱酸越来越受到关注。脱酸塔内合理组织气液流动,实现气液充分混合,是提高液滴利用率,实现高效脱酸的关键。研究脱酸塔内气液分布、气液混合及液滴群蒸发特性,对指导实践具有重要意义。针对喷雾干燥脱酸塔内气液混合问题,采用Euler-Lagrange方法,对塔内的烟气流动和液滴群运动及蒸发进行模拟。先研究了塔内气液分布和液滴群蒸发的基本特性,建立液滴群无量纲径向位移和散布程度
学位
汽车保有量的持续增大带来了严峻的能源和环境问题,严格的排放法规对内燃机技术(高效率,低排放)提出了更高的要求。以稀薄燃烧为代表的燃烧方式逐渐成为汽油机高效清洁燃烧的主要研究方向,稀薄燃烧能够有效的改善汽油发动机的燃烧效率,同时还能降低HC和CO排放,但汽油在稀薄极限条件下的火核形成难和火焰传播慢等问题限制了稀燃汽油机的发展。本研究将环己烷作为环烷烃的代表加入到汽油燃料替代物中,以满足燃料在稀薄工况
学位
太阳能光热发电技术是太阳能规模化利用的一种重要方式。其中,直接产生蒸汽(Direct Steam Generation,DSG)槽式太阳能光热发电技术具有系统结构简单,可获得较高蒸汽温度,以及投资和运营成本低等优势,具有广泛的发展潜力和应用前景。DSG太阳能热发电系统过热汽温响应具有明显的惯性和非线性。由于太阳辐射的间歇性和随机性波动,DSG系统在运行过程中经常性地出现工况的大幅度变动,导致集热系
学位
近年来,大量的CO2排放造成了严重的“温室效应”及引发的环境问题,已经严重威胁到人类的生存发展。面对如此严峻的环境问题,同时为了实现“碳达峰、碳中和”的目标,电化学还原CO2技术因其反应速率快、可在常温常压反应等优势引起人们的关注。同时此方法能够将可再生能源中间歇式、不稳定的电能用于电化学还原,也是一种新型储能方式。目前,电化学还原CO2生成具有更高的能量密度和附加价值的多碳产物是研究热点之一,其
学位
有机朗肯循环(ORC)作为一种中低品位余热利用技术,不仅可以提高一次能源利用率,在可再生能源利用方面也具有广阔的市场前景。但ORC系统在运行过程中,系统内不凝性气体对工质的冷凝传热过程影响大,使系统输出功和热效率明显降低。目前关于不凝性气体的研究主要集中在热管、制冷、蒸汽冷凝等领域,而对ORC中不凝性气体的影响研究较少。基于上述背景,本文构建了含不凝性气体的ORC系统热力学模型和冷凝器凝结传热模型
学位
微流控芯片体积微小,比表面积高,在能量传递和物质传输方面颇具优势,因此具有样品消耗量小、反应迅速、灵敏度高、高度集成化、便于携带的特点。这使得微流控芯片在生化检测、材料合成、能源高效应用等领域极具应用前景。在生化分析和检测过程中,样品溶液浓缩处理是重要的中间环节,也是提高检测灵敏度的最佳方法。光热蒸发浓缩技术通过光照射在流体或者光热材料,产生光热效应对样品溶液进行加热,可以实现非接触式的样品浓缩,
学位