纳秒激光刻蚀硅橡胶超疏水表面的覆冰特征研究

来源 :湖北工业大学 | 被引量 : 0次 | 上传用户:jiangur2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低温气候环境下,输电线路的覆冰问题是影响电力运输可靠性和稳定性的重要因素。目前采用的机械除冰、加热除冰、喷洒盐水等方式不仅耗费大量的人力物力,而且难以获得令人满意的除冰效果。由于提高硅橡胶表面的疏水性可在一定程度上改善其抗覆冰性能,但其覆冰特征与超疏水表面微结构的形态以及颗粒尺寸还有着更加密切而直接的联系。因此,如何有效的控制超疏水硅橡胶表面形态及颗粒尺寸的大小,以达到良好的防覆冰性能还需进一步的深入研究。针对该问题,本文采用激光刻蚀的方式调控硅橡胶表面的浸润性和结构形态,具体分析了其表面结构形态、颗粒尺度等特征对覆冰特征的影响机理。对比分析了普通硅橡胶和超疏水硅橡胶表面的液滴在降温过程中的形态特征及冰粒状态。结果表明,在室温状态下,未经处理的硅橡胶表面与液滴的接触行为呈Wenzel状态,在凝冰过程中,冰核将最早形成于水滴的底部中央,并随着温度的降低而逐渐向表面延伸,最终形成圆锥形冰粒。而超疏水试样表面液滴的凝冰过程中,其外表面将首先形成极薄的冰层,并从水滴的底部凝固逐渐向上延伸,而最终包裹水滴,在降温过程中水滴与试样表面的接触状态表现为“底部周围的Wenzel状态,中央的Casie状态”的特征。通过改变激光刻蚀的参数,制备了具有不同微观结构的硅橡胶超疏水表面,进一步讨论不同表面微结构对其表面凝冰、覆冰特征的影响规律。结果表明,当激光能量密度达到10 J/cm~2时,所制备的超疏水表面具有更大的颗粒尺度和更丰富的分布层次,该表面与水滴的实际接触面积更小。在降温过程中,其表面的微小间隙内的空气将被凝固的液滴封闭在间隙内,因此该表面的液滴凝固时间最长,即使表面温度降低到-18℃时,其表面的接触角仍能保持在~140°。进一步考察了超疏水表面在实际应用中的防覆冰效果,对各表面的覆冰状态进行了测试,结果表明,采用能量密度为10 J/cm~2所制备的超疏水硅橡胶表面上与覆冰层的粘合强度最小,而且经过30次的凝冰和除冰循环后,其表面仍保持了出色的疏水性能。在加速老化过程中,该超疏水表面也表现出了良好的稳定性。分析结果证明,超疏水表面的具体微结构状态对其抗覆冰性能的影响十分明显,本文通过改变激光刻蚀参数,调整超疏水硅橡胶表面微结构状态,以获得良好的抗覆冰性能,是可行且可靠的。
其他文献
以聚合物泡沫为夹心,玻璃纤维增强板为面板的复合材料夹层结构是一种先进结构形式,具有强度高、重量轻、稳定性好、隔音和隔热性好、耐腐蚀性强等诸多优点;因其所具有的出色的工程应用性能而被广泛的运用于建筑、航空航天与船舶领域,其所具有的高比刚度、比强度的特点使其在船舶领域的运用能够减轻船体自重,从而增加有效荷载,实现船体结构“轻量化”的目标。但其在船舶领域的应用很大程度上会受到海洋环境的制约,泡沫芯材及聚
当今国家经济发展,建筑住宅需求上升,墙体材料用量随之增加,但传统墙体材料已不符合节能、低耗的新材料发展趋势。因此发展新型墙体材料,可减少建筑能耗,发挥其节能环保作用
中国传统文化观是指对中国传统文化的基本观点。这个“观”可以是宏观,也可以是微观;可以是正面观,也可以是反面观。中国近现代的文化保守主义者多是正面观,而文化自由主义者
丛枝菌根真菌(AM真菌)可以与包括玉米等农作物在内超过90%的陆生维管植物形成互利共生关系。共生的真菌可以帮助植物从根周围土壤吸收水分和微量元素等,还可以帮助植物提高其生物和非生物胁迫的抗逆性,在逆境条件下改善植物自身的营养状况。长链非编码RNA(long noncoding RNAs,Lnc RNAs)是大于200个核苷酸且不翻译蛋白质的RNA,它在生物体内存在的数量十分庞大,几乎参与所有的生物
癌症严重威胁人类的健康。目前治疗癌症的方法存在很多局限性,探索和研究有效治疗策略成为长期的目标。纳米酶的发现为治疗肿瘤提供了新的方法和手段,引起了科学界的研究兴趣。纳米酶在纳米水平上的独特理化特性,例如超小颗粒/侧面尺寸,高稳定性,可调节的催化活性,大表面积,多种功能性以及对外部刺激的灵敏响应等,使其具有出色的催化性能,在多个领域有重要应用,例如在生物医学的应用,为治疗多种疾病提供了新的策略。值得
系统的正常运行是维持生活正常运转和行业发展的基础。本文研究系统的维修策略,建立了单部件系统和双部件冷贮备系统的维修模型。基于系统长期运行的费效比,给出了系统最优维修策略。研究内容分为三部分:研究只有一个部件的简单系统。假设该系统在运行过程中会发生可维修的类型I故障和不可维修的类型II故障两类故障。当发生类型I故障时,立即对系统进行故障性维修;当发生类型II故障时,更换系统。系统运行的第n个周期中,
STEM教育最早在美国兴起,是指通过问题解决、项目学习、任务完成、工程设计等方式将科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科有效融合的多学科教育,经过多年的发展,其在理论上日趋成熟,已成为当前国际科学教育的研究热点。科学探究素养作为物理核心素养的重要组成部分,对学生的终身发展起到关键性作用,是高中物理学科教学必不可少
厚壳贻贝是我国沿海地区的重要经济水产贝类,同时也是一种海洋污损生物。生物被膜是海洋生态系统中关键的组成成分,并提供能够显著影响整体群落组成的生化线索。鞭毛作为细菌原核生物的运动器官,不仅影响着其运动能力,还参与很多微生物的生理活动过程,包括对生物被膜的形成过程。研究表明,鞭毛具有一定的毒性,可引起宿主的免疫反应,进而影响宿主的生理活动。细菌鞭毛的合成是由多级鞭毛调控基因控制合成蛋白进而组装形成鞭毛
在癌症疾病中,结直肠癌(Colorectal cancer,CRC)的发病率和致死率很高,其发病症状隐匿,又易转移和扩散,对人类生命健康构成严重威胁,临床药物治疗效果非常有限,仍需要进一步研究并开发有效的治疗药物和方法。基于纳米技术合成的多功能药物可以按需实现多种优势,如药物示踪,药物特异性靶向,药物在病灶位点控制释放,较高的生物相容性等,可显著提高癌症诊断和治疗效率。近年来对纳米药物的研究大趋势
癌症严重威胁着人类健康。鉴于恶性肿瘤的高风险与高死亡率,科研工作者们致力于开发更精确快速的诊断策略和更高效的治疗方法。随着纳米科技在肿瘤学领域的不断发展,合成制备功能性的纳米材料用于实现肿瘤诊断与治疗的诊疗一体化制剂成为当今的研究热点。然而,肿瘤的乏氧微环境的存在降低了肿瘤治疗的效果,研究表明,解决肿瘤乏氧能使肿瘤治疗事半功倍。在本课题研究中,我们分别构建了两种利用肿瘤内过表达的过氧化氢改善肿瘤乏