猪繁殖与呼吸综合征病毒上调猪树突细胞CD83的表达及其分子机制

来源 :南京农业大学 | 被引量 : 1次 | 上传用户:lfshiyi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
猪繁殖与呼吸综合征病毒(PRRSV)是危害全球养猪业的一种重要病原,可引起母猪繁殖障碍和猪呼吸道疾病,并导致感染猪体免疫抑制,造成严重经济损失,但其致病机理尚不十分清楚。CD83作为树突细胞(DCs)的重要表面分子,它不仅仅是DCs成熟的标志,还是DCs发挥其激发免疫应答作用不可或缺的功能性分子。CD83一方面活化DCs,另一方面为初始T细胞和记忆性T细胞提供共刺激信号,但可溶形式CD83分子(sCD83)具有强大的抑制混合淋巴细胞反应(MLR)和DCs介导的同种异体T细胞增殖反应作用。PRRSV与CD83的相互关系及其机制尚无报道。本研究主要内容如下:1.PRRSV诱导树突细胞CD83表达及其关键功能蛋白的探寻本研究采集PRRSV阴性猪外周血液淋巴细胞(PBMC),采用GM-CSF和IL-4刺激,制备获得单核细胞衍生的树突细胞(MoDCs),采用PRRSV 3个不同毒力毒株(高致病性毒株BB0907、经典毒株S1及致弱毒株NT0801,分别以不同剂量感染MoDCs,收集细胞和细胞培养液,分别通过流式细胞术检测MoDCs细胞膜CD83(mCD83)表达,夹心ELISA方法检测细胞培养液sCD83表达,qRT-PCR检测MoDCs CD83 mRNA水平,发现3种不同病毒株均可上调mCD83及其mRNA水平,并能够强烈诱导sCD83分泌。采用基因步移试剂盒扩增获得850 bp的CD83启动子基因,克隆至pGL3-Basic质粒,成功建立CD83双荧光报告基因检测系统。将PRRSV BB0907毒株编码蛋白基因克隆至pVAX1,构建成功PRRSV编码蛋白基因真核表达质粒。将不同真核表达质粒与CD83启动子报告基因共转染Marc-145和HEK293细胞,发现PRRSVN、nsp1及nsp10蛋白能够显著上调CD83启动子活性,表明PRRSVN、nsp1及nsp10蛋白在促进MoDCs表达sCD83方面发挥重要作用2.PRRSV N蛋白诱导树突细胞CD83表达及其分子机制本研究利用丙氨酸突变技术,构建PRRSV N蛋白基因的8个连续氨基酸(aa)残基突变体的基因重组质粒,转染Marc-145和HEK293细胞,采用CD83双荧光报告基因检测系统检测,结果显示:N蛋白第43和44aa残基能够上调CD83基因启动子活性。利用PRRSVBB0907毒株感染性cDNA克隆(pBB/wt),通过融合PCR方法构建上述N蛋白基因突变重组质粒,构建感染性cDNA克隆,拯救获得N蛋白第43和44aa突变重组PRRSV[rK43A和rR44A]及其回复重组病毒[rK43A(R)和rR44A(R)]。该4种重组病毒空斑和生长特性与其野生重组病毒rBB/wt相似,但rK43A与rR44A上调CD83启动子活性明显低于rBB/wt(P<0.001),rK43A(R)与rR44A(R)上调CD83活性与rBB/wt相似。将4种重组病毒及rBB/wt接种MoDCs后测定CD83表达水平,rK43A和rR44A组中的CD83 mRNA水平,mCD83表达水平及sCD83分泌量都明显低于rBB/wt、rK43A(R)和rR44A(R)组。根据CD83启动子基因序列含有的多个Sp1结合位点及NF-κB结合位点,利用Sp1 siRNA及NF-κB抑制剂研究Sp1及NF-κB在PRRSV N蛋白上调CD83中的作用。CD83双荧光报告基因检测系统检测结果显示,Sp1 siRNA及NF-κB抑制剂均能够阻断PRRSV及N蛋白质粒对CD83启动子的激活,但对rK43A和rR44A重组病毒激活CD83启动子活性无明显差异。rK43A和rR44A重组病毒感染MoDCs诱导的Sp1和NF-κB mRNA水平明显低于rBB/wt。上述结果表明,PRRSV N蛋白N端非共价键区域是PRRSV N蛋白上调CD83的关键区域,PRRSVN蛋白通过Sp1及NF-κB信号通路诱导CD83表达,从而丰富了 PRRSV免疫抑制理论基础。3.PRRSV nsp10蛋白诱导树突细胞CD83表达及其分子机制本研究采用截断体和丙氨酸基因突变技术,构建了 8个连读5aa突变体及多个点突变体重组质粒,与pCD83报告基因共转染Marc-145和HEK293细胞,采用CD83双荧光报告基因检测系统检测,结果显示:nsp10的第192至196aa和214-216aa残基,均能够上调CD83启动子活性。利用PRRSV BB0907毒株感染性cDNA克隆(pBB/wt),通过PCR方法构建了 nsp10位点基因突变体,拯救获得nsp10蛋白第192-196和214-216aa 突变重组PRRSV[rP192-196A,rG214-216]及其回复病毒[rP192-196A(R)和rG214-216(R)]。Nsp10基因突变重组PRRSV空斑和生长特性与其野生重组病毒rBB/wt相似,但rP192-196A和rG214-216对CD83启动子调节活性明显低于rBB/wt、rP192-196A(R)和rG214-216(R)。将重组病毒接种MoDCs后测定CD83蛋白水平,rP192-196A 和 rG214-216 对 CD83 诱导能力也明显低于 rBB/wt、rP192-196A(R)和rG214-216(R)。此外,Sp1 siRNA及NF-κB抑制剂均能够阻断PRRSV及Nsp10重组质粒对CD83启动子的激活,但对rP192-196A和rG214-216激活CD83启动子活性无明显影响。rP192-196A和rG214-216感染MoDCs诱导的Sp1和NF-κB mRNA水平明显低于rBB/wt组。上述结果表明,PRRSV nsp10的P192-196aa及G214-216aa是PRRSV Nsp10上调CD83的关键区域,PRRSV Nsp10也通过Sp1及NF-κB信号通路诱导CD83表达。4.PRRSV通过sCD83介导抑制MoDCs免疫调节作用本研究利用大肠杆菌表达系统和重组蛋白纯化技术,制备sCD83重组蛋白。将sCD83重组蛋白预处理MoDCs并与PBMC分离的T细胞共培养,结果显示,随着sCD83剂量的增加,T细胞增殖明显减低。采用CD83抗体预先封闭MoDCs后,则其丧失对T细胞增殖的抑制能力。Western blot检测结果显示,sCD83蛋白以剂量依赖的方式抑制LPS刺激的MoDCs中TAP1和ERp57蛋白的表达,表明sCD83能够明显抑制T细胞的增殖,降低MoDCs细胞抗原提呈能力。将PRRSV感染的MoDCs与PBMC中T细胞共培养结果显示,PRRSV感染能够抑制MoDCs促进T细胞增殖,采用CD83抗体封闭MoDCs,PRRSV抑制作用明显降低。同时,PPPSV感染明显抑制MoDCs中TAP1和ERp57蛋白表达。上述结果表明,PRRSV通过诱导sCD83抑制MoDCs抗原提呈及MoDCs介导的T淋巴细胞增殖作用,丰富了 PRRSV免疫抑制机制理论基础。5.PRRSV nsp1通过sCD83介导抑制MoDCs免疫调节作用及其关键氨基酸位点本研究构建了 PRRSV BB0907毒株nsp 1、nsp 1 α及nsp 1 β真核表达质粒,发现仅nsp1α具有上调CD83启动子活性功能。根据nsp1α功能域构建nsp1α截断体,同时利用丙氨酸突变技术构建10个半胱氨酸位点突变的重组质粒,发现nsp1α上调CD83的功能区域位于锌指结构域,nsp1α的C8半胱氨酸对上调CD83也有重要作用。针对锌指结构域,构建12个连续4-6个氨基酸突变的重组质粒及多个点突变重组质粒,发现nsp1α调节CD83的功能位点位于第5aa、6aa、45aa、48aa及61-66aa。因此,构建了 PRRSV BB0907 毒株 nsp1α 第 5-2aa、45a/48a 及 61-6aa 单突变重组病毒[rL5-2A、rG45/G48A、rL61-6A]及双突变体病毒rNsp1α-2m和rNsp1α-3m,随后构建了回复病毒[rL5-2A(R)、rG45/G48A(R)、rL61-6A(R)、rNsp1α-2m(R)和 rNsp1α-3m(R)]。除了 rL5-2A和rNsp1α-3m,其他突变重组病毒空斑和生长特性与其野生重组病毒 rBB/wt 相似,rL5-2A、rG45A/G48A、rL61-6A、rNsp1α-2m 和 rNsp1α-3m 重组PRRSV上调CD83启动子活性明显下降,表明PRRSV nsp1α锌指结构域5-2aa、45a、48a及61-66aa与上调CD83作用密切相关。为了进一步检测nsp1α的免疫抑制效应,将nsp1α突变重组PRRSV感染MoDCs,检测MoDCs抗原提呈相关蛋白TAP1和ERp57表达水平及PRRSV感染MoDCs对T细胞增殖能力,结果显示,与野生重组病毒相比,nsp1α 突变重组病毒 rL5-2A、rG45A/G48A、rL61-6A、rNsp1α-2m 和 rNsp1α-3m感染细胞TAP1和ERp57表达水平明显回升,且T细胞增殖能力也显著回升,表明突变体病的的抑制效应不同程度丧失。上述结果表明,PRRSV nsp1通过sCD83介导抑制MoDCs免疫调节作用,其关键氨基酸位点是第5-6aa、45aa、48aa及61-66aa,从而丰富了 PRRSV nsp1α能够引起机体的免疫抑制的理论基础。
其他文献
象草(Pennistum Purpurem Sch.)和甜高粱(sorghum bicolor)是重要的禾本科植物,广泛种植于热带和亚热带地区,常用于调制青贮饲料。添加乳酸菌促进乳酸发酵,抑制丁酸发酵,提高了青贮饲料的发酵品质。乳酸菌的生长和活性受发酵天数,乳酸菌的初始种群,水溶性碳水化合物和干物质含量的影响[1]。本研究的目的是分离乳酸菌,通过16S r DNA序列鉴定并确定其对象草和甜高粱青贮
肉牛耐寒临界温度为-15℃,环境温度达到25℃是肉牛是进入高温区的临界温度,大量研究表明,南方夏季高温环境极易造成肉牛发生热应激,热应激对肉牛生长性能及其机体的物质代谢均有重要影响;同时由于牛肉具有很好的营养价值,越来越多的受到消费者的喜爱。了解不同品种肉牛夏季高温高湿环境下的耐热性和脂质代谢特点有助于为肉牛的科学饲养与管理提供更多的科学参考,同时揭示不同品种肉牛肉品质的特点可以为消费者提供更科学
环境温度和湿度的相互作用对热带和亚热带地区奶牛的生产性能和繁殖过程会产生不利影响。而热应激已成为影响动物生产性能的主要问题之一。泌乳奶牛由于其泌乳期间产生过高的代谢热从而更容易受到热应激的影响。热休克蛋白是一种高度保守的具有分子伴侣活性的蛋白质超家族,热应激期间,在动物体内广泛表达。在热休克蛋白家族中,HSP7A1A和HSP90AA1是真核细胞中最丰富的蛋白质,被认为是泌乳奶牛热应激最重要的指标。
在现代集约化养殖中,为提高反刍动物的生产性能及生产效率,生产者往往采用高谷物日粮的饲喂模式。与以粗饲料为主的日粮相比,高谷物日粮在瘤胃内被瘤胃微生物快速发酵,导致瘤胃内VFA累积和pH值降低。为适应上述瘤胃内环境的变化,绵羊瘤胃生理结构会发生相应改变。然而,目前人们对于瘤胃上皮对高谷物日粮的适应性机制仍不清楚。因此,本论文从组织、细胞和分子层面,系统研究了绵羊瘤胃上皮对持续性饲喂高谷物日粮的适应机
多囊卵巢综合征(Polycystic ovarian syndrome,PCOS)是发生在育龄女性中常见的生殖障碍疾病,发病率约为5%-10%,是无排卵性不孕的常见病因。而在畜牧业生产实践中,卵泡囊肿也是母猪中常见的繁殖障碍疾病,可导致母猪不能排卵,大大降低母猪的繁殖性能,给养殖业造成巨大的经济损失。研究表明,雌性动物生育能力下降的主要原因是卵母细胞质量下降,临床上PCOS患者经过辅助生殖技术治疗
Kupffer细胞是肝脏中所占比例最高的免疫细胞,它可以作为抗原呈递细胞参与肿瘤监测以及肝脏的再生过程,在先天免疫反应和宿主防御中发挥着重要作用。越来越多的证据表明kupffer与内毒素(LPS)的相互作用可能引发各种类型的肝损伤包括内毒素血症、酒精性肝损伤和缺血再灌注损伤以及系统性的病毒感染。然而目前多关注炎症后对代谢变化的影响,关于代谢关键酶在免疫激活中的作用研究甚少。尽管近几年研究发现,PC
对产蛋动物而言,蛋黄是胚胎生长和发育所需营养的最主要来源。卵生脊椎动物的肝脏在雌激素(estrogen,E2)的调控下合成卵黄前体物。研究表明,卵黄前体物,如卵黄蛋白原(vitellogenin,VTG)和靶向卵黄的极低密度脂蛋白(very low-density lipoprotein,VLDLy)的浓度与产蛋量呈正相关。甜菜碱(betaine,BET)又称三甲基甘氨酸,由胆碱氧化而来,也可直接
人造肉作为理想的畜产品替代品,是改造传统畜牧业的关键一招,对中国粮食安全问题和畜产品供给体系调整问题有一定的战略意义。该文结合技术轨道理论,基于人造肉专利技术情报,运用专利分类共现分析法和“S”型曲线法分析人造肉技术系统内现有技术轨道和各轨道技术成熟度,并据此外推出未来人造肉技术可能的演进方向。研究表明:①人造肉技术系统内存在3类技术轨道,其中植物蛋白肉技术是近期人造肉技术系统的技术主轨道,当前人
家禽肉是优质蛋白质、矿物质和维生素的重要来源,其全球需求量每年呈指数增长。同时,热带和亚热带地区(主要是发展中国家)的家禽业在夏季受到强烈的高热影响,而且消极后果越来越严重。热应激(HS)的不良影响包括采食量减少,体重增加和胴体产量降低,肉品质下降,免疫应答降低和肉鸡死亡率增高等。生化和生理指标的改变与高温促进活性氧(ROS)反应的形成有关,过高的ROS可引起氧化损伤,从而导致严重的细胞和组织、器
学位
A型单端孢霉烯族毒素(Trichothecenes,TS)是自然存在于自然界中的一类重要的真菌毒素,主要是由镰刀菌(Fusarium)所产生的一类次级代谢产物。A型TS可广泛地污染粮食作物,尤其是大麦、燕麦、小麦、花生、马铃薯和玉米等农作物及其产品。这类毒素可以通过污染饲料,在动物和动物源性食品内残留,对人类和动物健康形成严重危害。A型TS可以诱发动物和人产生一系列的毒性反应,包括食欲下降和呕吐,